File size: 7,414 Bytes
10e9b7d
 
eccf8e4
e80aab9
31243f4
10e9b7d
e80aab9
335f9f4
e80aab9
31243f4
eccf8e4
31243f4
e80aab9
31243f4
 
e80aab9
31243f4
 
 
b5c6c62
31243f4
e80aab9
31243f4
 
e80aab9
31243f4
 
 
 
 
e80aab9
 
 
31243f4
e80aab9
 
31243f4
e80aab9
31243f4
 
e80aab9
 
 
 
7e4a06b
31243f4
 
 
 
7e4a06b
 
 
 
 
 
 
 
31243f4
 
e80aab9
31243f4
 
 
 
 
 
 
 
e80aab9
31243f4
 
eccf8e4
31243f4
 
 
 
 
 
 
 
e80aab9
31243f4
 
e80aab9
31243f4
 
e80aab9
31243f4
 
 
 
 
 
e80aab9
31243f4
 
 
e80aab9
31243f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e80aab9
 
 
31243f4
e80aab9
31243f4
 
e80aab9
31243f4
 
e80aab9
31243f4
e80aab9
 
31243f4
 
 
e80aab9
 
31243f4
 
 
e80aab9
 
31243f4
 
 
e80aab9
 
 
 
 
 
31243f4
 
 
 
 
e80aab9
31243f4
 
 
 
e80aab9
31243f4
 
 
 
e80aab9
 
 
 
31243f4
e80aab9
31243f4
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
31243f4
 
e80aab9
31243f4
 
 
 
e80aab9
 
 
31243f4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import gradio as gr
import requests
import inspect # To get source code for __repr__
import pandas as pd # For displaying results in a table

# --- Constants ---
DEFAULT_API_URL = "https://jofthomas-unit4-scoring.hf.space/" # Default URL for your FastAPI app

# --- Basic Agent Definition ---

class BasicAgent:
    """
    A very simple agent placeholder.
    It just returns a fixed string for any question.
    """
    def __init__(self):
        print("BasicAgent initialized.")
        # Add any setup if needed

    def __call__(self, question: str) -> str:
        """
        The agent's logic to answer a question.
        This basic version ignores the question content.
        """
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        # Replace this with actual logic if you were building a real agent
        fixed_answer = "This is a default answer."
        print(f"Agent returning fixed answer: {fixed_answer}")
        return fixed_answer

    def __repr__(self) -> str:
        """
        Return the source code required to reconstruct this agent.
        """
        imports = [
            "import inspect\n" # May not be strictly needed by the agent logic itself
        ]
        class_source = inspect.getsource(BasicAgent)
        full_source = "\n".join(imports) + "\n" + class_source
        return full_source

# --- Gradio UI and Logic ---

def run_and_submit_all( profile gr.OAuthProfile , api_url: str):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    
    if profile:
        username= f"{profile.name}"
        
    else:
        return "Please Login to Hugging Face with the button.", None 

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate the Agent
    try:
        agent = BasicAgent()
        agent_code = agent.__repr__()
        # print(f"Agent Code (first 200): {agent_code[:200]}...") # Debug
    except Exception as e:
        print(f"Error instantiating agent or getting repr: {e}")
        return f"Error initializing agent: {e}", None

    # 2. Fetch All Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             return "Fetched questions list is empty.", None
        print(f"Fetched {len(questions_data)} questions.")
        status_update = f"Fetched {len(questions_data)} questions. Running agent..."
        # Yield intermediate status if using gr.update
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run Agent on Each Question
    results_log = [] # To store data for the results table
    answers_payload = [] # To store data for the submission API
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")

        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue

        try:
            submitted_answer = agent(question_text) # Call the agent's logic
            answers_payload.append({
                "task_id": task_id,
                "submitted_answer": submitted_answer
            })
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": submitted_answer
            })
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             # Decide how to handle agent errors - skip? submit default?
             # Here, we'll just log and potentially skip submission for this task if needed
             results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": f"AGENT ERROR: {e}"
            })


    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers..."
    print(status_update)

    # 5. Submit to Leaderboard
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=45) # Increased timeout
        response.raise_for_status()
        result_data = response.json()

        # Prepare final status message and results table
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score')}% "
            f"({result_data.get('correct_count')}/{result_data.get('total_attempted')} correct)\n"
            f"Message: {result_data.get('message')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df

    except requests.exceptions.HTTPError as e:
        error_detail = e.response.text
        try:
            error_json = e.response.json()
            error_detail = error_json.get('detail', error_detail)
        except requests.exceptions.JSONDecodeError:
            pass
        status_message = f"Submission Failed (HTTP {e.response.status_code}): {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log) # Show attempts even if submission failed
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        "Enter the API URL and your username, then click Run. "
        "This will fetch all questions, run the *very basic* agent on them, "
        "submit all answers at once, and display the results."
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=4, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    # --- Component Interaction ---
    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True)