""" Hugging Face API integration for Norwegian RAG chatbot. Provides functions to interact with Hugging Face Inference API for both LLM and embedding models. """ import os import json import time import requests from typing import Dict, List, Optional, Union, Any from .config import ( LLM_MODELS, DEFAULT_LLM_MODEL, EMBEDDING_MODELS, DEFAULT_EMBEDDING_MODEL, HF_API_ENDPOINTS, API_PARAMS ) class HuggingFaceAPI: """ Client for interacting with Hugging Face Inference API. Supports both text generation (LLM) and embedding generation. """ def __init__( self, api_key: Optional[str] = None, llm_model: str = DEFAULT_LLM_MODEL, embedding_model: str = DEFAULT_EMBEDDING_MODEL ): """ Initialize the Hugging Face API client. Args: api_key: Hugging Face API key (optional, can use HF_API_KEY env var) llm_model: LLM model identifier from config embedding_model: Embedding model identifier from config """ self.api_key = api_key or os.environ.get("HF_API_KEY", "") # Set up model IDs self.llm_model_id = LLM_MODELS[llm_model]["model_id"] if llm_model in LLM_MODELS else LLM_MODELS[DEFAULT_LLM_MODEL]["model_id"] self.embedding_model_id = EMBEDDING_MODELS[embedding_model]["model_id"] if embedding_model in EMBEDDING_MODELS else EMBEDDING_MODELS[DEFAULT_EMBEDDING_MODEL]["model_id"] # Set up headers self.headers = {"Authorization": f"Bearer {self.api_key}"} if not self.api_key: print("Warning: No API key provided. API calls may be rate limited.") self.headers = {} def generate_text( self, prompt: str, max_length: int = API_PARAMS["max_length"], temperature: float = API_PARAMS["temperature"], top_p: float = API_PARAMS["top_p"], top_k: int = API_PARAMS["top_k"], repetition_penalty: float = API_PARAMS["repetition_penalty"], wait_for_model: bool = True ) -> str: """ Generate text using the LLM model. Args: prompt: Input text prompt max_length: Maximum length of generated text temperature: Sampling temperature top_p: Top-p sampling parameter top_k: Top-k sampling parameter repetition_penalty: Penalty for repetition wait_for_model: Whether to wait for model to load Returns: Generated text response """ payload = { "inputs": prompt, "parameters": { "max_length": max_length, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty } } api_url = f"{HF_API_ENDPOINTS['inference']}{self.llm_model_id}" # Make API request response = self._make_api_request(api_url, payload, wait_for_model) # Parse response if isinstance(response, list) and len(response) > 0: if "generated_text" in response[0]: return response[0]["generated_text"] return response[0].get("text", "") elif isinstance(response, dict): return response.get("generated_text", "") # Fallback return str(response) def generate_embeddings( self, texts: Union[str, List[str]], wait_for_model: bool = True ) -> List[List[float]]: """ Generate embeddings for text using the embedding model. Args: texts: Single text or list of texts to embed wait_for_model: Whether to wait for model to load Returns: List of embedding vectors """ # Ensure texts is a list if isinstance(texts, str): texts = [texts] payload = { "inputs": texts, } api_url = f"{HF_API_ENDPOINTS['feature-extraction']}{self.embedding_model_id}" # Make API request response = self._make_api_request(api_url, payload, wait_for_model) # Return embeddings return response def _make_api_request( self, api_url: str, payload: Dict[str, Any], wait_for_model: bool = True, max_retries: int = 5, retry_delay: int = 1 ) -> Any: """ Make a request to the Hugging Face API with retry logic. Args: api_url: API endpoint URL payload: Request payload wait_for_model: Whether to wait for model to load max_retries: Maximum number of retries retry_delay: Delay between retries in seconds Returns: API response """ for attempt in range(max_retries): try: response = requests.post(api_url, headers=self.headers, json=payload) # Check if model is still loading if response.status_code == 503 and wait_for_model: # Model is loading, wait and retry estimated_time = json.loads(response.content.decode("utf-8")).get("estimated_time", 20) print(f"Model is loading. Waiting {estimated_time} seconds...") time.sleep(estimated_time) continue # Check for other errors if response.status_code != 200: print(f"API request failed with status code {response.status_code}: {response.text}") if attempt < max_retries - 1: time.sleep(retry_delay * (2 ** attempt)) # Exponential backoff continue return {"error": response.text} return response.json() except Exception as e: print(f"API request failed: {str(e)}") if attempt < max_retries - 1: time.sleep(retry_delay * (2 ** attempt)) # Exponential backoff continue return {"error": str(e)} return {"error": "Max retries exceeded"} # Example RAG prompt template for Norwegian def create_rag_prompt(query: str, context: List[str]) -> str: """ Create a RAG prompt with retrieved context for the LLM. Args: query: User query context: List of retrieved document chunks Returns: Formatted prompt with context """ context_text = "\n\n".join([f"Dokument {i+1}:\n{chunk}" for i, chunk in enumerate(context)]) prompt = f"""Du er en hjelpsom assistent som svarer på norsk. Bruk følgende kontekst for å svare på spørsmålet. KONTEKST: {context_text} SPØRSMÅL: {query} SVAR: """ return prompt