Upload app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,20 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
message,
|
@@ -15,6 +24,30 @@ def respond(
|
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
for val in history:
|
@@ -27,17 +60,18 @@ def respond(
|
|
27 |
|
28 |
response = ""
|
29 |
|
30 |
-
for
|
31 |
-
|
|
|
32 |
max_tokens=max_tokens,
|
33 |
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
):
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
|
42 |
|
43 |
"""
|
@@ -46,9 +80,12 @@ For information on how to customize the ChatInterface, peruse the gradio docs: h
|
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
49 |
-
gr.Textbox(
|
|
|
|
|
|
|
50 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.
|
52 |
gr.Slider(
|
53 |
minimum=0.1,
|
54 |
maximum=1.0,
|
@@ -57,8 +94,48 @@ demo = gr.ChatInterface(
|
|
57 |
label="Top-p (nucleus sampling)",
|
58 |
),
|
59 |
],
|
|
|
|
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from openai import OpenAI
|
3 |
+
import os
|
4 |
+
import numpy as np
|
5 |
+
from src.document_processing.processor import DocumentProcessor
|
6 |
+
from src.rag.retriever import Retriever
|
7 |
+
from src.rag.generator import Generator
|
8 |
+
from src.api.openai_api import OpenAIAPI
|
9 |
|
10 |
+
# Initialize OpenAI client
|
11 |
+
api_key = os.environ.get("OPENAI_API_KEY", "")
|
12 |
+
openai_api = OpenAIAPI(api_key=api_key)
|
|
|
13 |
|
14 |
+
# Initialize RAG components with OpenAI API
|
15 |
+
document_processor = DocumentProcessor(api_client=openai_api)
|
16 |
+
retriever = Retriever(api_client=openai_api)
|
17 |
+
generator = Generator(api_client=openai_api)
|
18 |
|
19 |
def respond(
|
20 |
message,
|
|
|
24 |
temperature,
|
25 |
top_p,
|
26 |
):
|
27 |
+
# Check if we should use RAG
|
28 |
+
use_rag = "bruk dokumenter" in message.lower() or "bruk rag" in message.lower()
|
29 |
+
|
30 |
+
if use_rag:
|
31 |
+
# Use our RAG implementation with GPT-4o
|
32 |
+
try:
|
33 |
+
# Retrieve relevant chunks
|
34 |
+
retrieved_chunks = retriever.retrieve(message)
|
35 |
+
|
36 |
+
# Generate response using RAG
|
37 |
+
response = generator.generate(
|
38 |
+
query=message,
|
39 |
+
retrieved_chunks=retrieved_chunks,
|
40 |
+
temperature=temperature
|
41 |
+
)
|
42 |
+
|
43 |
+
yield response
|
44 |
+
return
|
45 |
+
except Exception as e:
|
46 |
+
# If RAG fails, fall back to standard GPT-4o
|
47 |
+
print(f"RAG failed: {str(e)}, falling back to standard GPT-4o")
|
48 |
+
|
49 |
+
# Standard GPT-4o approach
|
50 |
+
client = OpenAI(api_key=api_key)
|
51 |
messages = [{"role": "system", "content": system_message}]
|
52 |
|
53 |
for val in history:
|
|
|
60 |
|
61 |
response = ""
|
62 |
|
63 |
+
for chunk in client.chat.completions.create(
|
64 |
+
model="gpt-4o",
|
65 |
+
messages=messages,
|
66 |
max_tokens=max_tokens,
|
67 |
stream=True,
|
68 |
temperature=temperature,
|
69 |
top_p=top_p,
|
70 |
):
|
71 |
+
content = chunk.choices[0].delta.content
|
72 |
+
if content:
|
73 |
+
response += content
|
74 |
+
yield response
|
75 |
|
76 |
|
77 |
"""
|
|
|
80 |
demo = gr.ChatInterface(
|
81 |
respond,
|
82 |
additional_inputs=[
|
83 |
+
gr.Textbox(
|
84 |
+
value="Du er en hjelpsom assistent som svarer på norsk. Bruk kunnskapen din til å svare på spørsmål. Hvis brukeren skriver 'bruk dokumenter' eller 'bruk RAG', vil du bruke Retrieval-Augmented Generation for å svare basert på opplastede dokumenter.",
|
85 |
+
label="System message"
|
86 |
+
),
|
87 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
88 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
89 |
gr.Slider(
|
90 |
minimum=0.1,
|
91 |
maximum=1.0,
|
|
|
94 |
label="Top-p (nucleus sampling)",
|
95 |
),
|
96 |
],
|
97 |
+
title="Norwegian RAG Chatbot with GPT-4o",
|
98 |
+
description="En chatbot basert på Retrieval-Augmented Generation (RAG) for norsk språk med GPT-4o. Skriv 'bruk dokumenter' eller 'bruk RAG' i meldingen din for å aktivere RAG-funksjonalitet.",
|
99 |
)
|
100 |
|
101 |
+
# Create the document upload interface
|
102 |
+
with gr.Blocks() as document_upload:
|
103 |
+
with gr.Tab("Last opp dokumenter"):
|
104 |
+
with gr.Row():
|
105 |
+
with gr.Column(scale=2):
|
106 |
+
file_output = gr.File(label="Opplastede dokumenter")
|
107 |
+
upload_button = gr.UploadButton(
|
108 |
+
"Klikk for å laste opp dokument",
|
109 |
+
file_types=["pdf", "txt", "html"],
|
110 |
+
file_count="multiple"
|
111 |
+
)
|
112 |
+
|
113 |
+
with gr.Column(scale=3):
|
114 |
+
documents_list = gr.Dataframe(
|
115 |
+
headers=["Dokument ID", "Filnavn", "Dato", "Chunks"],
|
116 |
+
label="Dokumentliste",
|
117 |
+
interactive=False
|
118 |
+
)
|
119 |
+
|
120 |
+
process_status = gr.Textbox(label="Status", interactive=False)
|
121 |
+
refresh_btn = gr.Button("Oppdater dokumentliste")
|
122 |
+
|
123 |
+
# Set up event handlers
|
124 |
+
upload_button.upload(
|
125 |
+
fn=document_processor.process_document,
|
126 |
+
inputs=[upload_button],
|
127 |
+
outputs=[process_status, documents_list]
|
128 |
+
)
|
129 |
+
|
130 |
+
refresh_btn.click(
|
131 |
+
fn=lambda: [[doc_id, meta.get("filename", "N/A"), meta.get("processed_date", "N/A"), meta.get("chunk_count", 0)]
|
132 |
+
for doc_id, meta in document_processor.get_all_documents().items()],
|
133 |
+
inputs=None,
|
134 |
+
outputs=[documents_list]
|
135 |
+
)
|
136 |
+
|
137 |
+
# Combine the interfaces
|
138 |
+
app = gr.TabbedInterface([demo, document_upload], ["Chat", "Dokumenter"])
|
139 |
|
140 |
if __name__ == "__main__":
|
141 |
+
app.launch()
|