hertogateis commited on
Commit
b38e10d
·
verified ·
1 Parent(s): d4e6223

Create cadangan

Browse files
Files changed (1) hide show
  1. cadangan +158 -0
cadangan ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import streamlit as st
3
+ from st_aggrid import AgGrid
4
+ import pandas as pd
5
+ from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
6
+ import plotly.express as px
7
+
8
+ # Set the page layout for Streamlit
9
+ st.set_page_config(layout="wide")
10
+
11
+ # Initialize TAPAS pipeline
12
+ tqa = pipeline(task="table-question-answering",
13
+ model="google/tapas-large-finetuned-wtq",
14
+ device="cpu")
15
+
16
+ # Initialize T5 tokenizer and model for text generation
17
+ t5_tokenizer = T5Tokenizer.from_pretrained("t5-small")
18
+ t5_model = T5ForConditionalGeneration.from_pretrained("t5-small")
19
+
20
+ # Title and Introduction
21
+ st.title("Table Question Answering and Data Analysis App")
22
+ st.markdown("""
23
+ This app allows you to upload a table (CSV or Excel) and ask questions about the data.
24
+ Based on your question, it will provide the corresponding answer using the **TAPAS** model and additional data processing.
25
+
26
+ ### Available Features:
27
+ - **mean()**: For "average", it computes the mean of the entire numeric DataFrame.
28
+ - **sum()**: For "sum", it calculates the sum of all numeric values in the DataFrame.
29
+ - **max()**: For "max", it computes the maximum value in the DataFrame.
30
+ - **min()**: For "min", it computes the minimum value in the DataFrame.
31
+ - **count()**: For "count", it counts the non-null values in the entire DataFrame.
32
+ - **Graph Generation**: You can ask questions like "make a graph of column sales?" or "make a graph between sales and expenses?". The app will generate interactive graphs for you.
33
+
34
+ Upload your data and ask questions to get both answers and visualizations.
35
+ """)
36
+
37
+ # File uploader in the sidebar
38
+ file_name = st.sidebar.file_uploader("Upload file:", type=['csv', 'xlsx'])
39
+
40
+ # File processing and question answering
41
+ if file_name is None:
42
+ st.markdown('<p class="font">Please upload an excel or csv file </p>', unsafe_allow_html=True)
43
+ else:
44
+ try:
45
+ # Check file type and handle reading accordingly
46
+ if file_name.name.endswith('.csv'):
47
+ df = pd.read_csv(file_name, sep=';', encoding='ISO-8859-1') # Adjust encoding if needed
48
+ elif file_name.name.endswith('.xlsx'):
49
+ df = pd.read_excel(file_name, engine='openpyxl') # Use openpyxl to read .xlsx files
50
+ else:
51
+ st.error("Unsupported file type")
52
+ df = None
53
+
54
+ if df is not None:
55
+ numeric_columns = df.select_dtypes(include=['object']).columns
56
+ for col in numeric_columns:
57
+ df[col] = pd.to_numeric(df[col], errors='ignore')
58
+
59
+ st.write("Original Data:")
60
+ st.write(df)
61
+
62
+ df_numeric = df.copy()
63
+ df = df.astype(str)
64
+
65
+ # Display the first 5 rows of the dataframe in an editable grid
66
+ grid_response = AgGrid(
67
+ df.head(5),
68
+ fit_columns_on_grid_load=True, # Correct parameter to fit columns on grid load
69
+ editable=True,
70
+ height=300,
71
+ width='100%',
72
+ )
73
+
74
+ except Exception as e:
75
+ st.error(f"Error reading file: {str(e)}")
76
+
77
+ # User input for the question
78
+ question = st.text_input('Type your question')
79
+
80
+ # Check if the question is about generating a graph
81
+ is_graph_query = False
82
+ is_count_query = False
83
+
84
+ # Check if the question contains "count"
85
+ if 'count' in question.lower():
86
+ is_count_query = True
87
+ elif 'graph' in question.lower():
88
+ is_graph_query = True
89
+
90
+ # Process the answer using TAPAS and T5
91
+ with st.spinner():
92
+ if st.button('Answer'):
93
+ try:
94
+ if not is_graph_query:
95
+ # Process TAPAS-related questions if it's not a graph query
96
+ raw_answer = tqa(table=df, query=question, truncation=True)
97
+
98
+ # Display raw answer from TAPAS on the screen
99
+ st.markdown("<p style='font-family:sans-serif;font-size: 1rem;'>Raw TAPAS Answer: </p>", unsafe_allow_html=True)
100
+ st.write(raw_answer) # Display the raw TAPAS output
101
+
102
+ # Extract relevant values for Plotly
103
+ answer = raw_answer.get('answer', '')
104
+ coordinates = raw_answer.get('coordinates', [])
105
+ cells = raw_answer.get('cells', [])
106
+
107
+ st.markdown("<p style='font-family:sans-serif;font-size: 1rem;'>Relevant Data for Plotly: </p>", unsafe_allow_html=True)
108
+ st.write(f"Answer: {answer}")
109
+ st.write(f"Coordinates: {coordinates}")
110
+ st.write(f"Cells: {cells}")
111
+
112
+ # If TAPAS is returning a list of numbers for "average" like you mentioned
113
+ if "average" in question.lower() and cells:
114
+ # Assuming cells are numeric values that can be plotted in a graph
115
+ plot_data = [float(cell) for cell in cells] # Convert cells to numeric data
116
+
117
+ # Create a DataFrame for Plotly
118
+ plot_df = pd.DataFrame({ 'Index': list(range(1, len(plot_data) + 1)), 'Value': plot_data })
119
+
120
+ # Generate a graph using Plotly
121
+ fig = px.line(plot_df, x='Index', y='Value', title=f"Graph for '{question}'")
122
+ st.plotly_chart(fig, use_container_width=True)
123
+
124
+ else:
125
+ st.write(f"No data to plot for the question: '{question}'")
126
+
127
+ else:
128
+ # Handle graph-related questions
129
+ if is_count_query:
130
+ # Extract the column name to count
131
+ column_name = question.split('count')[-1].strip()
132
+
133
+ if column_name in df.columns:
134
+ # Ask TAPAS to count the rows for this specific column
135
+ count_result = tqa(table=df, query=f"count of {column_name}")
136
+ st.write(f"Count for column '{column_name}': {count_result['answer']}")
137
+ else:
138
+ st.warning(f"Column '{column_name}' not found in the dataset.")
139
+ elif 'between' in question.lower() and 'and' in question.lower():
140
+ columns = question.split('between')[-1].split('and')
141
+ columns = [col.strip() for col in columns]
142
+ if len(columns) == 2 and all(col in df.columns for col in columns):
143
+ fig = px.scatter(df, x=columns[0], y=columns[1], title=f"Graph between {columns[0]} and {columns[1]}")
144
+ st.plotly_chart(fig, use_container_width=True)
145
+ st.success(f"Here is the graph between '{columns[0]}' and '{columns[1]}'.")
146
+ else:
147
+ st.warning("Columns not found in the dataset.")
148
+ elif 'column' in question.lower():
149
+ column = question.split('of')[-1].strip()
150
+ if column in df.columns:
151
+ fig = px.line(df, x=df.index, y=column, title=f"Graph of column '{column}'")
152
+ st.plotly_chart(fig, use_container_width=True)
153
+
154
+ st.stop() # This halts further execution
155
+
156
+ except Exception as e:
157
+ st.warning(f"Error processing question or generating answer: {str(e)}")
158
+ st.warning("Please retype your question and make sure to use the column name and cell value correctly.")