Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from transformers import pipeline | |
# Set the page layout for Streamlit | |
st.set_page_config(layout="wide") | |
# Initialize TAPAS pipeline for table-based question answering (multilingual) | |
tqa = pipeline(task="table-question-answering", | |
model="google/tapas-large-finetuned-wtq", | |
device=0) # Assuming GPU is available, otherwise set device="cpu" | |
# Title and Introduction | |
st.title("Data Table with TAPAS NLP Integration") | |
st.markdown(""" | |
This app allows you to upload a table (CSV or Excel) and ask questions to extract information from the data. | |
Using **TAPAS**, the app can interpret your questions and provide the corresponding answers. | |
### Available Features: | |
- **Table Question Answering**: Ask questions related to the uploaded table. | |
Upload your data and ask questions to extract answers. | |
""") | |
# File uploader in the sidebar | |
file_name = st.sidebar.file_uploader("Upload file:", type=['csv', 'xlsx']) | |
# File processing and question answering | |
if file_name is None: | |
st.markdown('<p class="font">Please upload an excel or csv file </p>', unsafe_allow_html=True) | |
else: | |
try: | |
# Check file type and handle reading accordingly | |
if file_name.name.endswith('.csv'): | |
df = pd.read_csv(file_name, sep=';', encoding='ISO-8859-1') # Adjust encoding if needed | |
elif file_name.name.endswith('.xlsx'): | |
df = pd.read_excel(file_name, engine='openpyxl') # Use openpyxl to read .xlsx files | |
else: | |
st.error("Unsupported file type") | |
df = None | |
if df is not None: | |
# Convert object columns to numeric where possible | |
df = df.apply(pd.to_numeric, errors='ignore') | |
st.write("Original Data:") | |
st.write(df) | |
# Display a sample of data for user reference | |
st.write("Sample data:") | |
st.write(df.head()) | |
except Exception as e: | |
st.error(f"Error reading file: {str(e)}") | |
# User input for the question | |
question = st.text_input(f'Ask your question related to the table') | |
with st.spinner(): | |
if st.button('Get Answer'): | |
try: | |
# Ensure the question is a valid string | |
if not question or not isinstance(question, str): | |
st.error("Please enter a valid question.") | |
else: | |
# Use TAPAS model to process the question | |
result = tqa(table=df, query=question) | |
# Display the raw output from TAPAS | |
st.write("TAPAS Raw Output (Response):") | |
st.write(result) # This will display the raw output from TAPAS | |
# Optionally, you can output the raw output as plain text: | |
st.text("Raw TAPAS Output (Plain Text):") | |
st.text(str(result)) # This will display raw output as plain text | |
# Check if TAPAS is returning the expected answer | |
answer = result.get('answer', None) | |
if answer: | |
st.write(f"TAPAS Answer: {answer}") | |
else: | |
st.warning("TAPAS did not return a valid answer.") | |
except Exception as e: | |
st.warning(f"Error processing question or generating answer: {str(e)}") | |