Spaces:
Sleeping
Sleeping
File size: 5,262 Bytes
0bb3639 873ae70 0bb3639 873ae70 0bb3639 9aaa1ae 873ae70 0bb3639 ec0498e 0bb3639 ec0498e 873ae70 0bb3639 873ae70 0bb3639 873ae70 0bb3639 873ae70 0bb3639 b1c60f6 873ae70 0bb3639 873ae70 ec0498e 0bb3639 b1c60f6 0bb3639 b1c60f6 0a87f1d 873ae70 9aaa1ae 23651f1 9aaa1ae 23651f1 9aaa1ae 23651f1 9aaa1ae b1c60f6 0bb3639 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import os
import streamlit as st
from st_aggrid import AgGrid
import pandas as pd
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
import matplotlib.pyplot as plt
# Set the page layout for Streamlit
st.set_page_config(layout="wide")
# Initialize TAPAS pipeline
tqa = pipeline(task="table-question-answering",
model="google/tapas-large-finetuned-wtq",
device="cpu")
# Initialize T5 tokenizer and model for text generation
t5_tokenizer = T5Tokenizer.from_pretrained("t5-small")
t5_model = T5ForConditionalGeneration.from_pretrained("t5-small")
# Title and Introduction
st.title("Table Question Answering and Data Analysis App")
st.markdown("""
This app allows you to upload a table (CSV or Excel) and ask questions about the data.
Based on your question, it will provide the corresponding answer using the **TAPAS** model and additional data processing.
### Available Features:
- **mean()**: For "average", it computes the mean of the entire numeric DataFrame.
- **sum()**: For "sum", it calculates the sum of all numeric values in the DataFrame.
- **max()**: For "max", it computes the maximum value in the DataFrame.
- **min()**: For "min", it computes the minimum value in the DataFrame.
- **count()**: For "count", it counts the non-null values in the entire DataFrame.
""")
# File uploader in the sidebar
file_name = st.sidebar.file_uploader("Upload file:", type=['csv', 'xlsx'])
# File processing and question answering
if file_name is None:
st.markdown('<p class="font">Please upload an excel or csv file </p>', unsafe_allow_html=True)
else:
try:
# Check file type and handle reading accordingly
if file_name.name.endswith('.csv'):
df = pd.read_csv(file_name, sep=';', encoding='ISO-8859-1') # Adjust encoding if needed
elif file_name.name.endswith('.xlsx'):
df = pd.read_excel(file_name, engine='openpyxl') # Use openpyxl to read .xlsx files
else:
st.error("Unsupported file type")
df = None
if df is not None:
numeric_columns = df.select_dtypes(include=['object']).columns
for col in numeric_columns:
df[col] = pd.to_numeric(df[col], errors='ignore')
st.write("Original Data:")
st.write(df)
df_numeric = df.copy()
df = df.astype(str)
# Display the first 5 rows of the dataframe in an editable grid
grid_response = AgGrid(
df.head(5),
fit_columns_on_grid_load=True, # Correct parameter to fit columns on grid load
editable=True,
height=300,
width='100%',
)
except Exception as e:
st.error(f"Error reading file: {str(e)}")
# User input for the question
question = st.text_input('Type your question')
# Process the answer using TAPAS and T5
with st.spinner():
if st.button('Answer'):
try:
# Process TAPAS-related questions
raw_answer = tqa(table=df, query=question, truncation=True)
# Display raw answer from TAPAS on the screen
st.markdown("<p style='font-family:sans-serif;font-size: 1rem;'>Raw TAPAS Answer: </p>", unsafe_allow_html=True)
st.write(raw_answer) # Display the raw TAPAS output
# Extract relevant values for Plotly
answer = raw_answer.get('answer', '')
coordinates = raw_answer.get('coordinates', [])
cells = raw_answer.get('cells', [])
st.markdown("<p style='font-family:sans-serif;font-size: 1rem;'>Relevant Data for Plotly: </p>", unsafe_allow_html=True)
st.write(f"Answer: {answer}")
st.write(f"Coordinates: {coordinates}")
st.write(f"Cells: {cells}")
# If cells are returned, we will extract the corresponding values for plotting
if cells:
# Convert cell values from strings to floats for plotting
cell_values = [float(cell) for cell in cells if cell.replace('.', '', 1).isdigit()]
# Plot the data if we have valid numeric values
if len(cell_values) > 0:
# Assuming that the coordinates or answer provides context on column names
# You can adjust the labels or data based on the actual output
column_names = [f"Row {i+1}" for i in range(len(cell_values))]
fig, ax = plt.subplots()
ax.bar(column_names, cell_values)
ax.set_xlabel('Rows')
ax.set_ylabel('Values')
ax.set_title('Bar Plot of TAPAS Answer')
# Display the plot in the Streamlit app
st.pyplot(fig)
except Exception as e:
st.warning(f"Error processing question or generating answer: {str(e)}")
st.warning("Please retype your question and make sure to use the column name and cell value correctly.")
|