Spaces:
Sleeping
Sleeping
File size: 5,993 Bytes
873ae70 ec0498e 873ae70 d41df51 ec0498e 873ae70 ec0498e 873ae70 ec0498e 873ae70 ec0498e 873ae70 ec0498e 873ae70 d41df51 873ae70 a670d11 873ae70 ec0498e 873ae70 ec0498e d41df51 873ae70 2279e40 e72b6dc 2279e40 873ae70 2279e40 31de781 2279e40 0dea963 2279e40 873ae70 2279e40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import streamlit as st
import pandas as pd
import plotly.express as px
from transformers import pipeline
# Set the page layout for Streamlit
st.set_page_config(layout="wide")
# Initialize TAPAS pipeline for table-based question answering (multilingual)
tqa = pipeline(task="table-question-answering",
model="google/tapas-large-finetuned-wtq",
device=0) # Assuming GPU is available, otherwise set device="cpu"
# Title and Introduction
st.title("Data Visualization App with TAPAS NLP Integration")
st.markdown("""
This app allows you to upload a table (CSV or Excel) and ask questions to generate graphs visualizing the data.
Using **TAPAS**, the app can interpret your questions and generate the corresponding graphs.
### Available Features:
- **Scatter Plot**: Visualize relationships between two columns.
- **Line Graph**: Visualize a single column over time.
Upload your data and ask questions about the data to generate visualizations.
""")
# Language Selection
language = st.selectbox(
"Select the language of your question",
("English", "German", "French", "Spanish", "Italian", "Others")
)
# File uploader in the sidebar
file_name = st.sidebar.file_uploader("Upload file:", type=['csv', 'xlsx'])
# File processing and question answering
if file_name is None:
st.markdown('<p class="font">Please upload an excel or csv file </p>', unsafe_allow_html=True)
else:
try:
# Check file type and handle reading accordingly
if file_name.name.endswith('.csv'):
df = pd.read_csv(file_name, sep=';', encoding='ISO-8859-1') # Adjust encoding if needed
elif file_name.name.endswith('.xlsx'):
df = pd.read_excel(file_name, engine='openpyxl') # Use openpyxl to read .xlsx files
else:
st.error("Unsupported file type")
df = None
if df is not None:
# Show the original data with text columns intact
st.write("Original Data:")
st.write(df)
# Display a sample of data for graph generation
st.write("Sample data for graph generation:")
st.write(df.head())
except Exception as e:
st.error(f"Error reading file: {str(e)}")
# User input for the question
question = st.text_input(f'Ask your graph-related question in {language}')
with st.spinner():
if st.button('Generate Graph'):
try:
# Ensure the question is a valid string
if not question or not isinstance(question, str):
st.error("Please enter a valid question in the form of text.")
else:
# Use TAPAS model to process the question
result = tqa(table=df, query=question)
# Display the raw output from TAPAS
st.write("TAPAS Raw Output (Response):")
st.write(result) # This will display the raw output from TAPAS
# Optionally, you can output the raw output as plain text:
st.text("Raw TAPAS Output (Plain Text):")
st.text(str(result)) # This will display raw output as plain text
# Check if TAPAS is returning the expected answer
answer = result.get('answer', None)
if answer:
st.write(f"TAPAS Answer: {answer}")
else:
st.warning("TAPAS did not return a valid answer.")
# Determine if the question relates to graph generation
if 'between' in question.lower() and 'and' in question.lower():
# This is a request for a scatter plot (two columns)
columns = question.split('between')[-1].split('and')
columns = [col.strip() for col in columns]
if len(columns) == 2 and all(col in df.columns for col in columns):
# Prepare the data for Plotly (scatter plot)
x_data = df[columns[0]].dropna() # Extract x column, drop NaN values
y_data = df[columns[1]].dropna() # Extract y column, drop NaN values
# Ensure x_data and y_data have the same length
min_length = min(len(x_data), len(y_data))
x_data = x_data[:min_length]
y_data = y_data[:min_length]
# Create the scatter plot
fig = px.scatter(x=x_data, y=y_data, title=f"Scatter Plot between {columns[0]} and {columns[1]}")
st.plotly_chart(fig, use_container_width=True)
st.success(f"Here is the scatter plot between '{columns[0]}' and '{columns[1]}'.")
else:
st.warning("Columns not found in the dataset or the question format is incorrect.")
elif 'column' in question.lower():
# This is a request for a line graph (single column)
column = question.split('of')[-1].strip() # Handle 'of' keyword
if column in df.columns:
# Prepare the data for Plotly (line graph)
column_data = df[column].dropna() # Drop NaN values
# Create the line plot
fig = px.line(x=column_data.index, y=column_data, title=f"Graph of column '{column}'")
st.plotly_chart(fig, use_container_width=True)
st.success(f"Here is the graph of column '{column}'.")
else:
st.warning(f"Column '{column}' not found in the data.")
else:
st.warning("Please ask a valid graph-related question (e.g., 'make a graph between column1 and column2').")
except Exception as e:
st.warning(f"Error processing question or generating graph: {str(e)}")
|