🔨 [Add] Some Basic Module into models
Browse filesAdding some Basic module, e.g. Conv, Pool. Other module are waiting for refactor.
TODO 1: write a pytest and write RepNCSPELAN4.
TODO 2: check if we need fuse forward or not. Also, the weight initalize should be apply
- yolo/model/module.py +97 -8
yolo/model/module.py
CHANGED
@@ -1,5 +1,96 @@
|
|
|
|
|
|
1 |
import torch
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
|
5 |
# basic
|
@@ -247,20 +338,18 @@ class RepDark(nn.Module):
|
|
247 |
# CSPNet
|
248 |
class CSP(nn.Module):
|
249 |
# CSPNet
|
250 |
-
def __init__(self, in_channels, out_channels, repeat=1, cb_repeat=2, act=nn.ReLU()
|
251 |
-
|
252 |
super().__init__()
|
253 |
-
|
254 |
h_channels = in_channels // 2
|
255 |
self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act)
|
256 |
self.cb = nn.Sequential(*(ResConvBlock(h_channels, act=act, repeat=cb_repeat) for _ in range(repeat)))
|
257 |
self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act)
|
258 |
|
259 |
def forward(self, x):
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
return
|
264 |
|
265 |
|
266 |
class CSPDark(nn.Module):
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
import torch
|
4 |
+
from torch import Tensor, nn
|
5 |
+
from torch.nn.common_types import _size_2_t
|
6 |
+
|
7 |
+
from yolo.tools.module_helper import auto_pad, get_activation
|
8 |
+
|
9 |
+
|
10 |
+
class Conv(nn.Module):
|
11 |
+
"""A basic convolutional block that includes convolution, batch normalization, and activation."""
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self, in_channels: int, out_channels: int, kernel_size: _size_2_t, activation: Optional[str] = "SiLU", **kwargs
|
15 |
+
):
|
16 |
+
super().__init__()
|
17 |
+
kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs))
|
18 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs)
|
19 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
20 |
+
self.act = get_activation(activation)
|
21 |
+
|
22 |
+
def forward(self, x: Tensor) -> Tensor:
|
23 |
+
return self.act(self.bn(self.conv(x)))
|
24 |
+
|
25 |
+
|
26 |
+
class Pool(nn.Module):
|
27 |
+
"""A generic pooling block supporting 'max' and 'avg' pooling methods."""
|
28 |
+
|
29 |
+
def __init__(self, method: str = "max", kernel_size: _size_2_t = 1, **kwargs):
|
30 |
+
super().__init__()
|
31 |
+
kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs))
|
32 |
+
pool_classes = {"max": nn.MaxPool2d, "avg": nn.AvgPool2d}
|
33 |
+
self.pool = pool_classes[method.lower()](kernel_size=kernel_size, **kwargs)
|
34 |
+
|
35 |
+
def forward(self, x: Tensor) -> Tensor:
|
36 |
+
return self.pool(x)
|
37 |
+
|
38 |
+
|
39 |
+
class ADown(nn.Module):
|
40 |
+
"""Downsampling module combining average and max pooling with convolution for feature reduction."""
|
41 |
+
|
42 |
+
def __init__(self, in_channels: int, out_channels: int):
|
43 |
+
super().__init__()
|
44 |
+
half_in_channels = in_channels // 2
|
45 |
+
half_out_channels = out_channels // 2
|
46 |
+
mid_layer = {"kernel_size": 3, "stride": 2}
|
47 |
+
self.avg_pool = Pool("avg", kernel_size=2, stride=1)
|
48 |
+
self.conv1 = Conv(half_in_channels, half_out_channels, **mid_layer)
|
49 |
+
self.max_pool = Pool("max", **mid_layer)
|
50 |
+
self.conv2 = Conv(half_in_channels, half_out_channels, kernel_size=1)
|
51 |
+
|
52 |
+
def forward(self, x: Tensor) -> Tensor:
|
53 |
+
x = self.avg_pool(x)
|
54 |
+
x1, x2 = x.chunk(2, dim=1)
|
55 |
+
x1 = self.conv1(x1)
|
56 |
+
x2 = self.max_pool(x2)
|
57 |
+
x2 = self.conv2(x2)
|
58 |
+
return torch.cat((x1, x2), dim=1)
|
59 |
+
|
60 |
+
|
61 |
+
class CBLinear(nn.Module):
|
62 |
+
"""Convolutional block that outputs multiple feature maps split along the channel dimension."""
|
63 |
+
|
64 |
+
def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 1, **kwargs):
|
65 |
+
super(CBLinear, self).__init__()
|
66 |
+
kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs))
|
67 |
+
self.conv = nn.Conv2d(in_channels, sum(out_channels), kernel_size, **kwargs)
|
68 |
+
self.out_channels = out_channels
|
69 |
+
|
70 |
+
def forward(self, x: Tensor) -> tuple[Tensor]:
|
71 |
+
x = self.conv(x)
|
72 |
+
return x.split(self.out_channels, dim=1)
|
73 |
+
|
74 |
+
|
75 |
+
class SPPELAN(nn.Module):
|
76 |
+
"""SPPELAN module comprising multiple pooling and convolution layers."""
|
77 |
+
|
78 |
+
def __init__(self, in_channels, out_channels, neck_channels=Optional[int]):
|
79 |
+
super(SPPELAN, self).__init__()
|
80 |
+
neck_channels = neck_channels or out_channels // 2
|
81 |
+
|
82 |
+
self.conv1 = Conv(in_channels, neck_channels, kernel_size=1)
|
83 |
+
self.pools = nn.ModuleList([Pool("max", 5, padding=0) for _ in range(3)])
|
84 |
+
self.conv5 = Conv(4 * neck_channels, out_channels, kernel_size=1)
|
85 |
+
|
86 |
+
def forward(self, x: Tensor) -> Tensor:
|
87 |
+
features = [self.conv1(x)]
|
88 |
+
for pool in self.pools:
|
89 |
+
features.append(pool(features[-1]))
|
90 |
+
return self.conv5(torch.cat(features, dim=1))
|
91 |
+
|
92 |
+
|
93 |
+
#### -- ####
|
94 |
|
95 |
|
96 |
# basic
|
|
|
338 |
# CSPNet
|
339 |
class CSP(nn.Module):
|
340 |
# CSPNet
|
341 |
+
def __init__(self, in_channels, out_channels, repeat=1, cb_repeat=2, act=nn.ReLU()):
|
|
|
342 |
super().__init__()
|
|
|
343 |
h_channels = in_channels // 2
|
344 |
self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act)
|
345 |
self.cb = nn.Sequential(*(ResConvBlock(h_channels, act=act, repeat=cb_repeat) for _ in range(repeat)))
|
346 |
self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act)
|
347 |
|
348 |
def forward(self, x):
|
349 |
+
x = list(self.cv1(x).chunk(2, 1))
|
350 |
+
x = torch.cat((self.cb(x[0]), x[1]), 1)
|
351 |
+
x = self.cv2(x)
|
352 |
+
return x
|
353 |
|
354 |
|
355 |
class CSPDark(nn.Module):
|