Kin-Yiu, Wong
commited on
Create layers.py
Browse files- yolov9/models/layers.py +267 -0
yolov9/models/layers.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
# basic
|
5 |
+
|
6 |
+
class Conv(nn.Module):
|
7 |
+
# basic convlution
|
8 |
+
def __init__(self, in_channels, out_channels, kernel_size,
|
9 |
+
stride=1, padding=0, dilation=1, groups=1, act=nn.ReLU(),
|
10 |
+
bias=False, auto_padding=True, padding_mode='zeros'):
|
11 |
+
|
12 |
+
super().__init__()
|
13 |
+
|
14 |
+
# not yet handle the case when dilation is a tuple
|
15 |
+
if auto_padding:
|
16 |
+
if isinstance(kernel_size, int):
|
17 |
+
padding = (dilation * (kernel_size - 1) + 1) // 2
|
18 |
+
else:
|
19 |
+
padding = [(dilation * (k - 1) + 1) // 2 for k in kernel_size]
|
20 |
+
|
21 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, groups=groups, dilation=dilation, bias=bias)
|
22 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
23 |
+
self.act = act if isinstance(act, nn.Module) else nn.Identity()
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
return self.act(self.bn(self.conv(x)))
|
27 |
+
|
28 |
+
def forward_fuse(self, x):
|
29 |
+
return self.act(self.conv(x))
|
30 |
+
|
31 |
+
# to be implement
|
32 |
+
# def fuse_conv_bn(self):
|
33 |
+
|
34 |
+
|
35 |
+
# RepVGG
|
36 |
+
|
37 |
+
class RepConv(nn.Module):
|
38 |
+
# https://github.com/DingXiaoH/RepVGG
|
39 |
+
def __init__(self, in_channels, out_channels, kernel_size=3,
|
40 |
+
stride=1, groups=1, act=nn.ReLU()):
|
41 |
+
|
42 |
+
super().__init__()
|
43 |
+
|
44 |
+
self.conv1 = Conv(in_channels, out_channels, kernel_size, stride, groups=groups, act=False)
|
45 |
+
self.conv2 = Conv(in_channels, out_channels, 1, stride, groups=groups, act=False)
|
46 |
+
self.act = act if isinstance(act, nn.Module) else nn.Identity()
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
return self.act(self.conv1(x) + self.conv2(x))
|
50 |
+
|
51 |
+
def forward_fuse(self, x):
|
52 |
+
return self.act(self.conv(x))
|
53 |
+
|
54 |
+
# to be implement
|
55 |
+
# def fuse_convs(self):
|
56 |
+
|
57 |
+
|
58 |
+
# ResNet
|
59 |
+
|
60 |
+
class Res(nn.Module):
|
61 |
+
# ResNet bottleneck
|
62 |
+
def __init__(self, in_channels, out_channels,
|
63 |
+
groups=1, act=nn.ReLU(), ratio=0.25):
|
64 |
+
|
65 |
+
super().__init__()
|
66 |
+
|
67 |
+
h_channels = int(in_channels * ratio)
|
68 |
+
self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
|
69 |
+
self.cv2 = Conv(h_channels, h_channels, 3, 1, groups=groups, act=act)
|
70 |
+
self.cv3 = Conv(h_channels, out_channels, 1, 1, act=act)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
return x + self.cv3(self.cv2(self.cv1(x)))
|
74 |
+
|
75 |
+
|
76 |
+
class RepRes(nn.Module):
|
77 |
+
# RepResNet bottleneck
|
78 |
+
def __init__(self, in_channels, out_channels,
|
79 |
+
groups=1, act=nn.ReLU(), ratio=0.25):
|
80 |
+
|
81 |
+
super().__init__()
|
82 |
+
|
83 |
+
h_channels = int(in_channels * ratio)
|
84 |
+
self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
|
85 |
+
self.cv2 = RepConv(h_channels, h_channels, 3, 1, groups=groups, act=act)
|
86 |
+
self.cv3 = Conv(h_channels, out_channels, 1, 1, act=act)
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
return x + self.cv3(self.cv2(self.cv1(x)))
|
90 |
+
|
91 |
+
|
92 |
+
class ConvBlock(nn.Module):
|
93 |
+
# ConvBlock
|
94 |
+
def __init__(self, in_channels,
|
95 |
+
repeat=1, act=nn.ReLU(), ratio=1.0):
|
96 |
+
|
97 |
+
super().__init__()
|
98 |
+
|
99 |
+
h_channels = int(in_channels * ratio)
|
100 |
+
self.cv1 = Conv(in_channels, in_channels, 3, 1, act=act) if repeat == 1 else Conv(in_channels, h_channels, 3, 1, act=act)
|
101 |
+
self.cb = nn.Sequential(*(Conv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat-2))) if repeat > 2 else nn.Identity()
|
102 |
+
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
103 |
+
|
104 |
+
def forward(self, x):
|
105 |
+
return self.cv2(self.cb(self.cv1(x)))
|
106 |
+
|
107 |
+
|
108 |
+
class RepConvBlock(nn.Module):
|
109 |
+
# ConvBlock
|
110 |
+
def __init__(self, in_channels,
|
111 |
+
repeat=1, act=nn.ReLU(), ratio=1.0):
|
112 |
+
|
113 |
+
super().__init__()
|
114 |
+
|
115 |
+
h_channels = int(in_channels * ratio)
|
116 |
+
self.cv1 = Conv(in_channels, in_channels, 3, 1, act=act) if repeat == 1 else RepConv(in_channels, h_channels, 3, 1, act=act)
|
117 |
+
self.cb = nn.Sequential(*(RepConv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat-2))) if repeat > 2 else nn.Identity()
|
118 |
+
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
119 |
+
|
120 |
+
def forward(self, x):
|
121 |
+
return self.cv2(self.cb(self.cv1(x)))
|
122 |
+
|
123 |
+
|
124 |
+
class ResConvBlock(nn.Module):
|
125 |
+
# ResConvBlock
|
126 |
+
def __init__(self, in_channels,
|
127 |
+
repeat=1, act=nn.ReLU(), ratio=1.0):
|
128 |
+
|
129 |
+
super().__init__()
|
130 |
+
|
131 |
+
h_channels = int(in_channels * ratio)
|
132 |
+
self.cv1 = Conv(in_channels, in_channels, 3, 1, act=act) if repeat == 1 else Conv(in_channels, h_channels, 3, 1, act=act)
|
133 |
+
self.cb = nn.Sequential(*(Conv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat-2))) if repeat > 2 else nn.Identity()
|
134 |
+
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
135 |
+
|
136 |
+
def forward(self, x):
|
137 |
+
return x + self.cv2(self.cb(self.cv1(x)))
|
138 |
+
|
139 |
+
|
140 |
+
class ResRepConvBlock(nn.Module):
|
141 |
+
# ResConvBlock
|
142 |
+
def __init__(self, in_channels,
|
143 |
+
repeat=1, act=nn.ReLU(), ratio=1.0):
|
144 |
+
|
145 |
+
super().__init__()
|
146 |
+
|
147 |
+
h_channels = int(in_channels * ratio)
|
148 |
+
self.cv1 = Conv(in_channels, in_channels, 3, 1, act=act) if repeat == 1 else RepConv(in_channels, h_channels, 3, 1, act=act)
|
149 |
+
self.cb = nn.Sequential(*(RepConv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat-2))) if repeat > 2 else nn.Identity()
|
150 |
+
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
151 |
+
|
152 |
+
def forward(self, x):
|
153 |
+
return x + self.cv2(self.cb(self.cv1(x)))
|
154 |
+
|
155 |
+
|
156 |
+
# Darknet
|
157 |
+
|
158 |
+
class Dark(nn.Module):
|
159 |
+
# DarkNet bottleneck
|
160 |
+
def __init__(self, in_channels, out_channels,
|
161 |
+
groups=1, act=nn.ReLU(), ratio=0.5):
|
162 |
+
|
163 |
+
super().__init__()
|
164 |
+
|
165 |
+
h_channels = int(in_channels * ratio)
|
166 |
+
self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act)
|
167 |
+
self.cv2 = Conv(h_channels, out_channels, 3, 1, groups=groups, act=act)
|
168 |
+
|
169 |
+
def forward(self, x):
|
170 |
+
return x + self.cv2(self.cv1(x))
|
171 |
+
|
172 |
+
|
173 |
+
class RepDark(nn.Module):
|
174 |
+
# RepDarkNet bottleneck
|
175 |
+
def __init__(self, in_channels, out_channels,
|
176 |
+
groups=1, act=nn.ReLU(), ratio=0.5):
|
177 |
+
|
178 |
+
super().__init__()
|
179 |
+
|
180 |
+
h_channels = int(in_channels * ratio)
|
181 |
+
self.cv1 = RepConv(in_channels, h_channels, 3, 1, groups=groups, act=act)
|
182 |
+
self.cv2 = Conv(h_channels, out_channels, 1, 1, act=act)
|
183 |
+
|
184 |
+
def forward(self, x):
|
185 |
+
return x + self.cv2(self.cv1(x))
|
186 |
+
|
187 |
+
|
188 |
+
# CSPNet
|
189 |
+
|
190 |
+
class CSP(nn.Module):
|
191 |
+
# CSPNet
|
192 |
+
def __init__(self, in_channels, out_channels,
|
193 |
+
repeat=1, cb_repeat=2, act=nn.ReLU(), ratio=1.0):
|
194 |
+
|
195 |
+
super().__init__()
|
196 |
+
|
197 |
+
h_channels = in_channels // 2
|
198 |
+
self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act)
|
199 |
+
self.cb = nn.Sequential(*(ResConvBlock(h_channels, act=act, repeat=cb_repeat) for _ in range(repeat)))
|
200 |
+
self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act)
|
201 |
+
|
202 |
+
def forward(self, x):
|
203 |
+
|
204 |
+
y = list(self.cv1(x).chunk(2, 1))
|
205 |
+
|
206 |
+
return self.cv2(torch.cat((self.cb(y[0]), y[1]), 1))
|
207 |
+
|
208 |
+
|
209 |
+
class CSPDark(nn.Module):
|
210 |
+
# CSPNet
|
211 |
+
def __init__(self, in_channels, out_channels,
|
212 |
+
repeat=1, groups=1, act=nn.ReLU(), ratio=1.0):
|
213 |
+
|
214 |
+
super().__init__()
|
215 |
+
|
216 |
+
h_channels = in_channels // 2
|
217 |
+
self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act)
|
218 |
+
self.cb = nn.Sequential(*(Dark(h_channels, h_channels, groups=groups, act=act, ratio=ratio) for _ in range(repeat)))
|
219 |
+
self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act)
|
220 |
+
|
221 |
+
def forward(self, x):
|
222 |
+
|
223 |
+
y = list(self.cv1(x).chunk(2, 1))
|
224 |
+
|
225 |
+
return self.cv2(torch.cat((self.cb(y[0]), y[1]), 1))
|
226 |
+
|
227 |
+
|
228 |
+
# ELAN
|
229 |
+
|
230 |
+
class ELAN(nn.Module):
|
231 |
+
# ELAN
|
232 |
+
def __init__(self, in_channels, out_channels, med_channels,
|
233 |
+
elan_repeat=2, cb_repeat=2, ratio=1.0):
|
234 |
+
|
235 |
+
super().__init__()
|
236 |
+
|
237 |
+
h_channels = med_channels // 2
|
238 |
+
self.cv1 = Conv(in_channels, med_channels, 1, 1)
|
239 |
+
self.cb = nn.ModuleList(ConvBlock(h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat))
|
240 |
+
self.cv2 = Conv((2+elan_repeat) * h_channels, out_channels, 1, 1)
|
241 |
+
|
242 |
+
def forward(self, x):
|
243 |
+
|
244 |
+
y = list(self.cv1(x).chunk(2, 1))
|
245 |
+
y.extend((m(y[-1])) for m in self.cb)
|
246 |
+
|
247 |
+
return self.cv2(torch.cat(y, 1))
|
248 |
+
|
249 |
+
|
250 |
+
class CSPELAN(nn.Module):
|
251 |
+
# ELAN
|
252 |
+
def __init__(self, in_channels, out_channels, med_channels,
|
253 |
+
elan_repeat=2, cb_repeat=2, ratio=1.0):
|
254 |
+
|
255 |
+
super().__init__()
|
256 |
+
|
257 |
+
h_channels = med_channels // 2
|
258 |
+
self.cv1 = Conv(in_channels, med_channels, 1, 1)
|
259 |
+
self.cb = nn.ModuleList(CSP(h_channels, h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat))
|
260 |
+
self.cv2 = Conv((2+elan_repeat) * h_channels, out_channels, 1, 1)
|
261 |
+
|
262 |
+
def forward(self, x):
|
263 |
+
|
264 |
+
y = list(self.cv1(x).chunk(2, 1))
|
265 |
+
y.extend((m(y[-1])) for m in self.cb)
|
266 |
+
|
267 |
+
return self.cv2(torch.cat(y, 1))
|