YOLO / utils /loss.py
henry000's picture
✨ [Add] yolov9 loss function, align to origin v9
2ae492a
raw
history blame
7.19 kB
import sys
import time
from typing import Any, List
import numpy as np
import torch
import torch.nn.functional as F
from einops import rearrange
from hydra import main
from loguru import logger
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss
sys.path.append("./")
from config.config import Config
from tools.bbox_helper import BoxMatcher, calculate_iou, make_anchor, transform_bbox
def get_loss_function(*args, **kwargs):
raise NotImplementedError
class BCELoss(nn.Module):
def __init__(self) -> None:
super().__init__()
self.bce = BCEWithLogitsLoss(pos_weight=torch.tensor([1.0], device=torch.device("cuda")), reduction="none")
def forward(self, predicts_cls: Tensor, targets_cls: Tensor, cls_norm: Tensor) -> Any:
return self.bce(predicts_cls, targets_cls).sum() / cls_norm
class BoxLoss(nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(
self, predicts_bbox: Tensor, targets_bbox: Tensor, valid_masks: Tensor, box_norm: Tensor, cls_norm: Tensor
) -> Any:
valid_bbox = valid_masks[..., None].expand(-1, -1, 4)
picked_predict = predicts_bbox[valid_bbox].view(-1, 4)
picked_targets = targets_bbox[valid_bbox].view(-1, 4)
iou = calculate_iou(picked_predict, picked_targets, "ciou").diag()
loss_iou = 1.0 - iou
loss_iou = (loss_iou * box_norm).sum() / cls_norm
return loss_iou
class DFLoss(nn.Module):
def __init__(self, anchors: Tensor, scaler: Tensor, reg_max: int) -> None:
super().__init__()
self.anchors = anchors
self.scaler = scaler
self.reg_max = reg_max
def forward(
self, predicts_anc: Tensor, targets_bbox: Tensor, valid_masks: Tensor, box_norm: Tensor, cls_norm: Tensor
) -> Any:
valid_bbox = valid_masks[..., None].expand(-1, -1, 4)
bbox_lt, bbox_rb = targets_bbox.chunk(2, -1)
anchors_norm = (self.anchors / self.scaler[:, None])[None]
targets_dist = torch.cat(((anchors_norm - bbox_lt), (bbox_rb - anchors_norm)), -1).clamp(0, self.reg_max - 1.01)
picked_targets = targets_dist[valid_bbox].view(-1)
picked_predict = predicts_anc[valid_bbox].view(-1, self.reg_max)
label_left, label_right = picked_targets.floor(), picked_targets.floor() + 1
weight_left, weight_right = label_right - picked_targets, picked_targets - label_left
loss_left = F.cross_entropy(picked_predict, label_left.to(torch.long), reduction="none")
loss_right = F.cross_entropy(picked_predict, label_right.to(torch.long), reduction="none")
loss_dfl = loss_left * weight_left + loss_right * weight_right
loss_dfl = loss_dfl.view(-1, 4).mean(-1)
loss_dfl = (loss_dfl * box_norm).sum() / cls_norm
return loss_dfl
class YOLOLoss:
def __init__(self, cfg: Config) -> None:
self.reg_max = cfg.model.anchor.reg_max
self.class_num = cfg.hyper.data.class_num
self.image_size = list(cfg.hyper.data.image_size)
self.strides = cfg.model.anchor.strides
device = torch.device("cuda")
self.reverse_reg = torch.arange(self.reg_max, dtype=torch.float16, device=device)
self.scale_up = torch.tensor(self.image_size * 2, device=device)
self.anchors, self.scaler = make_anchor(self.image_size, self.strides, device)
self.cls = BCELoss()
self.dfl = DFLoss(self.anchors, self.scaler, self.reg_max)
self.iou = BoxLoss()
self.matcher = BoxMatcher(cfg.hyper.train.matcher, self.class_num, self.anchors)
def parse_predicts(self, predicts: List[Tensor]) -> Tensor:
"""
args:
[B x AnchorClass x h1 x w1, B x AnchorClass x h2 x w2, B x AnchorClass x h3 x w3] // AnchorClass = 4 * 16 + 80
return:
[B x HW x ClassBbox] // HW = h1*w1 + h2*w2 + h3*w3, ClassBox = 80 + 4 (xyXY)
"""
preds = []
for pred in predicts:
preds.append(rearrange(pred, "B AC h w -> B (h w) AC")) # B x AC x h x w-> B x hw x AC
preds = torch.concat(preds, dim=1) # -> B x (H W) x AC
preds_anc, preds_cls = torch.split(preds, (self.reg_max * 4, self.class_num), dim=-1)
preds_anc = rearrange(preds_anc, "B hw (P R)-> B hw P R", P=4)
pred_LTRB = preds_anc.softmax(dim=-1) @ self.reverse_reg * self.scaler.view(1, -1, 1)
lt, rb = pred_LTRB.chunk(2, dim=-1)
pred_minXY = self.anchors - lt
pred_maxXY = self.anchors + rb
predicts = torch.cat([preds_cls, pred_minXY, pred_maxXY], dim=-1)
return predicts, preds_anc
def parse_targets(self, targets: Tensor, batch_size: int = 16) -> List[Tensor]:
"""
return List:
"""
targets[:, 2:] = transform_bbox(targets[:, 2:], "xycwh -> xyxy") * self.scale_up
bbox_num = targets[:, 0].int().bincount()
batch_targets = torch.zeros(batch_size, bbox_num.max(), 5, device=targets.device)
for instance_idx, bbox_num in enumerate(bbox_num):
instance_targets = targets[targets[:, 0] == instance_idx]
batch_targets[instance_idx, :bbox_num] = instance_targets[:, 1:].detach()
return batch_targets
def separate_anchor(self, anchors):
"""
separate anchor and bbouding box
"""
anchors_cls, anchors_box = torch.split(anchors, (self.class_num, 4), dim=-1)
anchors_box = anchors_box / self.scaler[None, :, None]
return anchors_cls, anchors_box
@torch.autocast("cuda")
def __call__(self, predicts: List[Tensor], targets: Tensor) -> Tensor:
# Batch_Size x (Anchor + Class) x H x W
tlist = [time.time()]
# TODO: check datatype, why targets has a little bit error with origin version
predicts, predicts_anc = self.parse_predicts(predicts[0])
targets = self.parse_targets(targets)
align_targets, valid_masks = self.matcher(targets, predicts)
# calculate loss between with instance and predict
targets_cls, targets_bbox = self.separate_anchor(align_targets)
predicts_cls, predicts_bbox = self.separate_anchor(predicts)
cls_norm = targets_cls.sum()
box_norm = targets_cls.sum(-1)[valid_masks]
## -- CLS -- ##
loss_cls = self.cls(predicts_cls, targets_cls, cls_norm)
## -- IOU -- ##
loss_iou = self.iou(predicts_bbox, targets_bbox, valid_masks, box_norm, cls_norm)
## -- DFL -- ##
loss_dfl = self.dfl(predicts_anc, targets_bbox, valid_masks, box_norm, cls_norm)
logger.info("Loss IoU: {:.5f}, DFL: {:.5f}, CLS: {:.5f}", loss_iou, loss_dfl, loss_cls)
tlist.append(time.time())
logger.info(f"Calculate Loss Run Time {np.diff(np.array(tlist)) * 1e3} ms")
@main(config_path="../config", config_name="config", version_base=None)
def main(cfg):
losser = YOLOLoss(cfg)
targets = torch.load("targets.pt")
predicts = torch.load("predicts.pt")
losser(predicts, targets)
if __name__ == "__main__":
import sys
sys.path.append("./")
from tools.log_helper import custom_logger
custom_logger()
main()