Spaces:
Sleeping
Sleeping
Implement project structure and configuration for initial setup
Browse files- dashboard.py +0 -1519
dashboard.py
DELETED
@@ -1,1519 +0,0 @@
|
|
1 |
-
import base64
|
2 |
-
import io
|
3 |
-
import random
|
4 |
-
|
5 |
-
import dash
|
6 |
-
import numpy as np
|
7 |
-
import pandas as pd
|
8 |
-
import plotly.express as px
|
9 |
-
import plotly.graph_objects as go
|
10 |
-
from dash import Input, Output, State, callback, dcc, html
|
11 |
-
|
12 |
-
# Initialize the Dash app
|
13 |
-
app = dash.Dash(__name__, suppress_callback_exceptions=True)
|
14 |
-
server = app.server
|
15 |
-
|
16 |
-
|
17 |
-
# Define app layout
|
18 |
-
app.layout = html.Div(
|
19 |
-
[
|
20 |
-
# Header
|
21 |
-
html.Div(
|
22 |
-
[
|
23 |
-
html.H1(
|
24 |
-
"Sessions Observatory by helvia.ai ππ",
|
25 |
-
className="app-header",
|
26 |
-
),
|
27 |
-
html.P(
|
28 |
-
"Upload a CSV/Excel file to visualize the chatbot's dialog topics.",
|
29 |
-
className="app-description",
|
30 |
-
),
|
31 |
-
],
|
32 |
-
className="header-container",
|
33 |
-
),
|
34 |
-
# File Upload Component
|
35 |
-
html.Div(
|
36 |
-
[
|
37 |
-
dcc.Upload(
|
38 |
-
id="upload-data",
|
39 |
-
children=html.Div(
|
40 |
-
[
|
41 |
-
html.Div("Drag and Drop", className="upload-text"),
|
42 |
-
html.Div("or", className="upload-divider"),
|
43 |
-
html.Div(
|
44 |
-
html.Button("Select a File", className="upload-button")
|
45 |
-
),
|
46 |
-
],
|
47 |
-
className="upload-content",
|
48 |
-
),
|
49 |
-
style={
|
50 |
-
"width": "100%",
|
51 |
-
"height": "120px",
|
52 |
-
"lineHeight": "60px",
|
53 |
-
"borderWidth": "1px",
|
54 |
-
"borderStyle": "dashed",
|
55 |
-
"borderRadius": "0.5rem",
|
56 |
-
"textAlign": "center",
|
57 |
-
"margin": "10px 0",
|
58 |
-
"backgroundColor": "hsl(210, 40%, 98%)",
|
59 |
-
"borderColor": "hsl(214.3, 31.8%, 91.4%)",
|
60 |
-
"cursor": "pointer",
|
61 |
-
},
|
62 |
-
multiple=False,
|
63 |
-
),
|
64 |
-
# Status message with more padding and emphasis
|
65 |
-
html.Div(
|
66 |
-
id="upload-status",
|
67 |
-
className="upload-status-message",
|
68 |
-
style={"display": "none"}, # Initially hidden
|
69 |
-
),
|
70 |
-
],
|
71 |
-
className="upload-container",
|
72 |
-
),
|
73 |
-
# Main Content Area (hidden until file is uploaded)
|
74 |
-
html.Div(
|
75 |
-
[
|
76 |
-
# Dashboard layout with flexible grid
|
77 |
-
html.Div(
|
78 |
-
[
|
79 |
-
# Left side: Bubble chart
|
80 |
-
html.Div(
|
81 |
-
[
|
82 |
-
html.H3(
|
83 |
-
id="topic-distribution-header",
|
84 |
-
children="Sessions Observatory",
|
85 |
-
className="section-header",
|
86 |
-
),
|
87 |
-
# dcc.Graph(id="bubble-chart", style={"height": "80vh"}),
|
88 |
-
dcc.Graph(
|
89 |
-
id="bubble-chart",
|
90 |
-
style={"height": "calc(100% - 154px)"},
|
91 |
-
), # this does not work for some reason
|
92 |
-
html.Div(
|
93 |
-
[
|
94 |
-
# Only keep Color by
|
95 |
-
html.Div(
|
96 |
-
[
|
97 |
-
html.Div(
|
98 |
-
html.Label(
|
99 |
-
"Color by:",
|
100 |
-
className="control-label",
|
101 |
-
),
|
102 |
-
className="control-label-container",
|
103 |
-
),
|
104 |
-
],
|
105 |
-
className="control-labels-row",
|
106 |
-
),
|
107 |
-
# Only keep Color by options
|
108 |
-
html.Div(
|
109 |
-
[
|
110 |
-
html.Div(
|
111 |
-
dcc.RadioItems(
|
112 |
-
id="color-metric",
|
113 |
-
options=[
|
114 |
-
{
|
115 |
-
"label": "Sentiment",
|
116 |
-
"value": "negative_rate",
|
117 |
-
},
|
118 |
-
{
|
119 |
-
"label": "Resolution",
|
120 |
-
"value": "unresolved_rate",
|
121 |
-
},
|
122 |
-
{
|
123 |
-
"label": "Urgency",
|
124 |
-
"value": "urgent_rate",
|
125 |
-
},
|
126 |
-
],
|
127 |
-
value="negative_rate",
|
128 |
-
inline=True,
|
129 |
-
className="radio-group",
|
130 |
-
inputClassName="radio-input",
|
131 |
-
labelClassName="radio-label",
|
132 |
-
),
|
133 |
-
className="radio-container",
|
134 |
-
),
|
135 |
-
],
|
136 |
-
className="control-options-row",
|
137 |
-
),
|
138 |
-
],
|
139 |
-
className="chart-controls",
|
140 |
-
),
|
141 |
-
],
|
142 |
-
className="chart-container",
|
143 |
-
),
|
144 |
-
# Right side: Interactive sidebar with topic details
|
145 |
-
html.Div(
|
146 |
-
[
|
147 |
-
html.Div(
|
148 |
-
[
|
149 |
-
html.H3(
|
150 |
-
"Topic Details", className="section-header"
|
151 |
-
),
|
152 |
-
html.Div(
|
153 |
-
id="topic-title", className="topic-title"
|
154 |
-
),
|
155 |
-
html.Div(
|
156 |
-
[
|
157 |
-
html.Div(
|
158 |
-
[
|
159 |
-
html.H4(
|
160 |
-
"Metadata",
|
161 |
-
className="subsection-header",
|
162 |
-
),
|
163 |
-
html.Div(
|
164 |
-
id="topic-metadata",
|
165 |
-
className="metadata-container",
|
166 |
-
),
|
167 |
-
],
|
168 |
-
className="metadata-section",
|
169 |
-
),
|
170 |
-
html.Div(
|
171 |
-
[
|
172 |
-
html.H4(
|
173 |
-
"Key Metrics",
|
174 |
-
className="subsection-header",
|
175 |
-
),
|
176 |
-
html.Div(
|
177 |
-
id="topic-metrics",
|
178 |
-
className="metrics-container",
|
179 |
-
),
|
180 |
-
],
|
181 |
-
className="metrics-section",
|
182 |
-
),
|
183 |
-
# Added Tags section
|
184 |
-
html.Div(
|
185 |
-
[
|
186 |
-
html.H4(
|
187 |
-
"Tags",
|
188 |
-
className="subsection-header",
|
189 |
-
),
|
190 |
-
html.Div(
|
191 |
-
id="important-tags",
|
192 |
-
className="tags-container",
|
193 |
-
),
|
194 |
-
]
|
195 |
-
),
|
196 |
-
],
|
197 |
-
className="details-section",
|
198 |
-
),
|
199 |
-
html.Div(
|
200 |
-
[
|
201 |
-
html.H4(
|
202 |
-
"Sample Dialogs (Summary)",
|
203 |
-
className="subsection-header",
|
204 |
-
),
|
205 |
-
html.Div(
|
206 |
-
id="sample-dialogs",
|
207 |
-
className="sample-dialogs-container",
|
208 |
-
),
|
209 |
-
],
|
210 |
-
className="samples-section",
|
211 |
-
),
|
212 |
-
],
|
213 |
-
className="topic-details-content",
|
214 |
-
),
|
215 |
-
html.Div(
|
216 |
-
id="no-topic-selected",
|
217 |
-
children=[
|
218 |
-
html.Div(
|
219 |
-
[
|
220 |
-
html.I(
|
221 |
-
className="fas fa-info-circle info-icon"
|
222 |
-
),
|
223 |
-
html.H3("No topic selected"),
|
224 |
-
html.P(
|
225 |
-
"Click or hover on a bubble to view topic details."
|
226 |
-
),
|
227 |
-
],
|
228 |
-
className="no-selection-message",
|
229 |
-
)
|
230 |
-
],
|
231 |
-
className="no-selection-container",
|
232 |
-
),
|
233 |
-
],
|
234 |
-
className="sidebar-container",
|
235 |
-
),
|
236 |
-
],
|
237 |
-
className="dashboard-container",
|
238 |
-
)
|
239 |
-
],
|
240 |
-
id="main-content",
|
241 |
-
style={"display": "none"},
|
242 |
-
),
|
243 |
-
# Store the processed data
|
244 |
-
dcc.Store(id="stored-data"),
|
245 |
-
],
|
246 |
-
className="app-container",
|
247 |
-
)
|
248 |
-
|
249 |
-
# Define CSS for the app
|
250 |
-
app.index_string = """
|
251 |
-
<!DOCTYPE html>
|
252 |
-
<html>
|
253 |
-
<head>
|
254 |
-
{%metas%}
|
255 |
-
<title>Sessions Observatory by helvia.ai ππ</title>
|
256 |
-
{%favicon%}
|
257 |
-
{%css%}
|
258 |
-
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">
|
259 |
-
<style>
|
260 |
-
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
261 |
-
|
262 |
-
:root {
|
263 |
-
--background: hsl(210, 20%, 95%);
|
264 |
-
--foreground: hsl(222.2, 84%, 4.9%);
|
265 |
-
--card: hsl(0, 0%, 100%);
|
266 |
-
--card-foreground: hsl(222.2, 84%, 4.9%);
|
267 |
-
--popover: hsl(0, 0%, 100%);
|
268 |
-
--popover-foreground: hsl(222.2, 84%, 4.9%);
|
269 |
-
--primary: hsl(222.2, 47.4%, 11.2%);
|
270 |
-
--primary-foreground: hsl(210, 40%, 98%);
|
271 |
-
--secondary: hsl(210, 40%, 96.1%);
|
272 |
-
--secondary-foreground: hsl(222.2, 47.4%, 11.2%);
|
273 |
-
--muted: hsl(210, 40%, 96.1%);
|
274 |
-
--muted-foreground: hsl(215.4, 16.3%, 46.9%);
|
275 |
-
--accent: hsl(210, 40%, 96.1%);
|
276 |
-
--accent-foreground: hsl(222.2, 47.4%, 11.2%);
|
277 |
-
--destructive: hsl(0, 84.2%, 60.2%);
|
278 |
-
--destructive-foreground: hsl(210, 40%, 98%);
|
279 |
-
--border: hsl(214.3, 31.8%, 91.4%);
|
280 |
-
--input: hsl(214.3, 31.8%, 91.4%);
|
281 |
-
--ring: hsl(222.2, 84%, 4.9%);
|
282 |
-
--radius: 0.5rem;
|
283 |
-
}
|
284 |
-
|
285 |
-
* {
|
286 |
-
margin: 0;
|
287 |
-
padding: 0;
|
288 |
-
box-sizing: border-box;
|
289 |
-
font-family: 'Inter', sans-serif;
|
290 |
-
}
|
291 |
-
|
292 |
-
body {
|
293 |
-
background-color: var(--background);
|
294 |
-
color: var(--foreground);
|
295 |
-
font-feature-settings: "rlig" 1, "calt" 1;
|
296 |
-
}
|
297 |
-
|
298 |
-
.app-container {
|
299 |
-
max-width: 2500px;
|
300 |
-
margin: 0 auto;
|
301 |
-
padding: 1.5rem;
|
302 |
-
background-color: var(--background);
|
303 |
-
min-height: 100vh;
|
304 |
-
display: flex;
|
305 |
-
flex-direction: column;
|
306 |
-
}
|
307 |
-
|
308 |
-
.header-container {
|
309 |
-
margin-bottom: 2rem;
|
310 |
-
text-align: center;
|
311 |
-
}
|
312 |
-
|
313 |
-
.app-header {
|
314 |
-
color: var(--foreground);
|
315 |
-
margin-bottom: 0.75rem;
|
316 |
-
font-weight: 600;
|
317 |
-
font-size: 2rem;
|
318 |
-
line-height: 1.2;
|
319 |
-
}
|
320 |
-
|
321 |
-
.app-description {
|
322 |
-
color: var(--muted-foreground);
|
323 |
-
font-size: 1rem;
|
324 |
-
line-height: 1.5;
|
325 |
-
}
|
326 |
-
|
327 |
-
.upload-container {
|
328 |
-
margin-bottom: 2rem;
|
329 |
-
max-width: 800px;
|
330 |
-
margin-left: auto;
|
331 |
-
margin-right: auto;
|
332 |
-
}
|
333 |
-
|
334 |
-
.upload-content {
|
335 |
-
display: flex;
|
336 |
-
flex-direction: column;
|
337 |
-
align-items: center;
|
338 |
-
justify-content: center;
|
339 |
-
height: 80%;
|
340 |
-
padding: 1.5rem;
|
341 |
-
position: relative;
|
342 |
-
}
|
343 |
-
|
344 |
-
.upload-text {
|
345 |
-
font-size: 1rem;
|
346 |
-
color: var(--primary);
|
347 |
-
font-weight: 500;
|
348 |
-
}
|
349 |
-
|
350 |
-
.upload-divider {
|
351 |
-
color: var(--muted-foreground);
|
352 |
-
margin: 0.5rem 0;
|
353 |
-
font-size: 0.875rem;
|
354 |
-
}
|
355 |
-
|
356 |
-
.upload-button {
|
357 |
-
background-color: var(--primary);
|
358 |
-
color: var(--primary-foreground);
|
359 |
-
border: none;
|
360 |
-
padding: 0.5rem 1rem;
|
361 |
-
border-radius: var(--radius);
|
362 |
-
font-size: 0.875rem;
|
363 |
-
cursor: pointer;
|
364 |
-
transition: opacity 0.2s;
|
365 |
-
font-weight: 500;
|
366 |
-
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05);
|
367 |
-
height: 2.5rem;
|
368 |
-
}
|
369 |
-
|
370 |
-
.upload-button:hover {
|
371 |
-
opacity: 0.9;
|
372 |
-
}
|
373 |
-
|
374 |
-
/* Status message styling */
|
375 |
-
.upload-status-message {
|
376 |
-
margin-top: 1rem;
|
377 |
-
padding: 0.75rem;
|
378 |
-
font-weight: 500;
|
379 |
-
text-align: center;
|
380 |
-
border-radius: var(--radius);
|
381 |
-
font-size: 0.875rem;
|
382 |
-
transition: all 0.3s ease;
|
383 |
-
background-color: var(--secondary);
|
384 |
-
color: var(--secondary-foreground);
|
385 |
-
}
|
386 |
-
|
387 |
-
/* Chart controls styling */
|
388 |
-
.chart-controls {
|
389 |
-
margin-top: 1rem;
|
390 |
-
display: flex;
|
391 |
-
flex-direction: column;
|
392 |
-
gap: 0.75rem;
|
393 |
-
padding: 1rem;
|
394 |
-
background-color: var(--card);
|
395 |
-
border-radius: var(--radius);
|
396 |
-
border: 1px solid var(--border);
|
397 |
-
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05);
|
398 |
-
}
|
399 |
-
|
400 |
-
.control-labels-row {
|
401 |
-
display: flex;
|
402 |
-
width: 100%;
|
403 |
-
}
|
404 |
-
|
405 |
-
.control-options-row {
|
406 |
-
display: flex;
|
407 |
-
width: 100%;
|
408 |
-
}
|
409 |
-
|
410 |
-
.control-label-container {
|
411 |
-
padding: 0 0.5rem;
|
412 |
-
text-align: left;
|
413 |
-
}
|
414 |
-
|
415 |
-
.control-label {
|
416 |
-
font-weight: 500;
|
417 |
-
color: var(--foreground);
|
418 |
-
font-size: 0.875rem;
|
419 |
-
line-height: 1.25rem;
|
420 |
-
}
|
421 |
-
|
422 |
-
.radio-container {
|
423 |
-
padding: 0 0.5rem;
|
424 |
-
width: 100%;
|
425 |
-
}
|
426 |
-
|
427 |
-
.radio-group {
|
428 |
-
display: flex;
|
429 |
-
gap: 1rem;
|
430 |
-
}
|
431 |
-
|
432 |
-
.radio-input {
|
433 |
-
margin-right: 0.375rem;
|
434 |
-
cursor: pointer;
|
435 |
-
height: 1rem;
|
436 |
-
width: 1rem;
|
437 |
-
border-radius: 9999px;
|
438 |
-
border: 1px solid var(--border);
|
439 |
-
appearance: none;
|
440 |
-
-webkit-appearance: none;
|
441 |
-
background-color: var(--background);
|
442 |
-
transition: border-color 0.2s;
|
443 |
-
}
|
444 |
-
|
445 |
-
.radio-input:checked {
|
446 |
-
border-color: var(--primary);
|
447 |
-
background-color: var(--primary);
|
448 |
-
background-image: url("data:image/svg+xml,%3csvg viewBox='0 0 16 16' fill='white' xmlns='http://www.w3.org/2000/svg'%3e%3ccircle cx='8' cy='8' r='3'/%3e%3c/svg%3e");
|
449 |
-
background-size: 100% 100%;
|
450 |
-
background-position: center;
|
451 |
-
background-repeat: no-repeat;
|
452 |
-
}
|
453 |
-
|
454 |
-
.radio-label {
|
455 |
-
font-weight: 400;
|
456 |
-
color: var(--foreground);
|
457 |
-
display: flex;
|
458 |
-
align-items: center;
|
459 |
-
cursor: pointer;
|
460 |
-
font-size: 0.875rem;
|
461 |
-
line-height: 1.25rem;
|
462 |
-
}
|
463 |
-
|
464 |
-
/* Dashboard container */
|
465 |
-
.dashboard-container {
|
466 |
-
display: flex;
|
467 |
-
flex-wrap: wrap;
|
468 |
-
gap: 1.5rem;
|
469 |
-
flex: 1;
|
470 |
-
height: 100%;
|
471 |
-
}
|
472 |
-
|
473 |
-
.chart-container {
|
474 |
-
flex: 2.75;
|
475 |
-
min-width: 400px;
|
476 |
-
background: var(--card);
|
477 |
-
border-radius: var(--radius);
|
478 |
-
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
|
479 |
-
padding: 1rem;
|
480 |
-
border: 0.75px solid var(--border);
|
481 |
-
height: 100%;
|
482 |
-
}
|
483 |
-
|
484 |
-
.sidebar-container {
|
485 |
-
flex: 1;
|
486 |
-
min-width: 300px;
|
487 |
-
background: var(--card);
|
488 |
-
border-radius: var(--radius);
|
489 |
-
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
|
490 |
-
padding: 1rem;
|
491 |
-
position: relative;
|
492 |
-
height: 100vh;
|
493 |
-
overflow-y: auto;
|
494 |
-
border: 1px solid var(--border);
|
495 |
-
height: 100%;
|
496 |
-
}
|
497 |
-
|
498 |
-
.section-header {
|
499 |
-
margin-bottom: 1rem;
|
500 |
-
color: var(--foreground);
|
501 |
-
border-bottom: 1px solid var(--border);
|
502 |
-
padding-bottom: 0.75rem;
|
503 |
-
font-weight: 600;
|
504 |
-
font-size: 1.25rem;
|
505 |
-
}
|
506 |
-
|
507 |
-
.subsection-header {
|
508 |
-
margin: 1rem 0 0.75rem;
|
509 |
-
color: var(--foreground);
|
510 |
-
font-size: 1rem;
|
511 |
-
font-weight: 600;
|
512 |
-
}
|
513 |
-
|
514 |
-
.topic-title {
|
515 |
-
font-size: 1.25rem;
|
516 |
-
font-weight: 600;
|
517 |
-
color: var(--foreground);
|
518 |
-
margin-bottom: 1rem;
|
519 |
-
padding: 0.5rem 0.75rem;
|
520 |
-
background-color: var(--secondary);
|
521 |
-
border-radius: var(--radius);
|
522 |
-
}
|
523 |
-
|
524 |
-
.metadata-container {
|
525 |
-
display: flex;
|
526 |
-
flex-wrap: wrap;
|
527 |
-
gap: 0.75rem;
|
528 |
-
margin-bottom: 1rem;
|
529 |
-
}
|
530 |
-
|
531 |
-
.metadata-item {
|
532 |
-
background-color: var(--secondary);
|
533 |
-
padding: 0.5rem 0.75rem;
|
534 |
-
border-radius: var(--radius);
|
535 |
-
font-size: 0.875rem;
|
536 |
-
display: flex;
|
537 |
-
align-items: center;
|
538 |
-
color: var(--secondary-foreground);
|
539 |
-
}
|
540 |
-
|
541 |
-
.metadata-icon {
|
542 |
-
margin-right: 0.5rem;
|
543 |
-
color: var(--primary);
|
544 |
-
}
|
545 |
-
|
546 |
-
.metrics-container {
|
547 |
-
display: flex;
|
548 |
-
justify-content: space-between;
|
549 |
-
gap: 0.75rem;
|
550 |
-
margin-bottom: 0.75rem;
|
551 |
-
}
|
552 |
-
|
553 |
-
.metric-box {
|
554 |
-
background-color: var(--card);
|
555 |
-
border-radius: var(--radius);
|
556 |
-
padding: 0.75rem;
|
557 |
-
text-align: center;
|
558 |
-
flex: 1;
|
559 |
-
border: 1px solid var(--border);
|
560 |
-
}
|
561 |
-
|
562 |
-
.metric-box.negative {
|
563 |
-
border-left: 3px solid var(--destructive);
|
564 |
-
}
|
565 |
-
|
566 |
-
.metric-box.unresolved {
|
567 |
-
border-left: 3px solid hsl(47.9, 95.8%, 53.1%);
|
568 |
-
}
|
569 |
-
|
570 |
-
.metric-box.urgent {
|
571 |
-
border-left: 3px solid hsl(217.2, 91.2%, 59.8%);
|
572 |
-
}
|
573 |
-
|
574 |
-
.metric-value {
|
575 |
-
font-size: 1.5rem;
|
576 |
-
font-weight: 600;
|
577 |
-
margin-bottom: 0.25rem;
|
578 |
-
color: var(--foreground);
|
579 |
-
line-height: 1;
|
580 |
-
}
|
581 |
-
|
582 |
-
.metric-label {
|
583 |
-
font-size: 0.75rem;
|
584 |
-
color: var(--muted-foreground);
|
585 |
-
}
|
586 |
-
|
587 |
-
.sample-dialogs-container {
|
588 |
-
margin-top: 0.75rem;
|
589 |
-
}
|
590 |
-
|
591 |
-
.dialog-item {
|
592 |
-
background-color: var(--secondary);
|
593 |
-
border-radius: var(--radius);
|
594 |
-
padding: 1rem;
|
595 |
-
margin-bottom: 0.75rem;
|
596 |
-
border-left: 3px solid var(--primary);
|
597 |
-
}
|
598 |
-
|
599 |
-
.dialog-summary {
|
600 |
-
font-size: 0.875rem;
|
601 |
-
line-height: 1.5;
|
602 |
-
margin-bottom: 0.5rem;
|
603 |
-
color: var(--foreground);
|
604 |
-
}
|
605 |
-
|
606 |
-
.dialog-metadata {
|
607 |
-
display: flex;
|
608 |
-
flex-wrap: wrap;
|
609 |
-
gap: 0.5rem;
|
610 |
-
margin-top: 0.5rem;
|
611 |
-
font-size: 0.75rem;
|
612 |
-
}
|
613 |
-
|
614 |
-
.dialog-tag {
|
615 |
-
padding: 0.25rem 0.5rem;
|
616 |
-
border-radius: var(--radius);
|
617 |
-
font-size: 0.7rem;
|
618 |
-
font-weight: 500;
|
619 |
-
}
|
620 |
-
|
621 |
-
.tag-sentiment {
|
622 |
-
background-color: var(--destructive);
|
623 |
-
color: var(--destructive-foreground);
|
624 |
-
}
|
625 |
-
|
626 |
-
.tag-resolution {
|
627 |
-
background-color: hsl(47.9, 95.8%, 53.1%);
|
628 |
-
color: hsl(222.2, 84%, 4.9%);
|
629 |
-
}
|
630 |
-
|
631 |
-
.tag-urgency {
|
632 |
-
background-color: hsl(217.2, 91.2%, 59.8%);
|
633 |
-
color: hsl(210, 40%, 98%);
|
634 |
-
}
|
635 |
-
|
636 |
-
.tag-chat-id {
|
637 |
-
background-color: hsl(215.4, 16.3%, 46.9%);
|
638 |
-
color: hsl(210, 40%, 98%);
|
639 |
-
font-family: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;
|
640 |
-
font-weight: 500;
|
641 |
-
}
|
642 |
-
|
643 |
-
.no-selection-container {
|
644 |
-
position: absolute;
|
645 |
-
top: 0;
|
646 |
-
left: 0;
|
647 |
-
right: 0;
|
648 |
-
bottom: 0;
|
649 |
-
display: flex;
|
650 |
-
align-items: center;
|
651 |
-
justify-content: center;
|
652 |
-
background-color: hsla(0, 0%, 100%, 0.95);
|
653 |
-
z-index: 10;
|
654 |
-
border-radius: var(--radius);
|
655 |
-
}
|
656 |
-
|
657 |
-
.no-selection-message {
|
658 |
-
text-align: center;
|
659 |
-
color: var(--muted-foreground);
|
660 |
-
padding: 1.5rem;
|
661 |
-
}
|
662 |
-
|
663 |
-
.info-icon {
|
664 |
-
font-size: 2rem;
|
665 |
-
margin-bottom: 0.75rem;
|
666 |
-
color: var(--muted);
|
667 |
-
}
|
668 |
-
|
669 |
-
/* Tags container */
|
670 |
-
.tags-container {
|
671 |
-
display: flex;
|
672 |
-
flex-wrap: wrap;
|
673 |
-
gap: 8px;
|
674 |
-
margin-top: 5px;
|
675 |
-
margin-bottom: 15px;
|
676 |
-
padding: 6px;
|
677 |
-
border-radius: 8px;
|
678 |
-
background-color: #f8f9fa;
|
679 |
-
}
|
680 |
-
|
681 |
-
|
682 |
-
.topic-tag {
|
683 |
-
padding: 0.375rem 0.75rem;
|
684 |
-
border-radius: var(--radius);
|
685 |
-
font-size: 0.75rem;
|
686 |
-
display: inline-flex;
|
687 |
-
align-items: center;
|
688 |
-
transition: all 0.2s ease;
|
689 |
-
font-weight: 500;
|
690 |
-
margin-bottom: 0.25rem;
|
691 |
-
cursor: default;
|
692 |
-
background-color: var(--muted);
|
693 |
-
color: var(--muted-foreground);
|
694 |
-
border: 1px solid var(--border);
|
695 |
-
}
|
696 |
-
|
697 |
-
.topic-tag {
|
698 |
-
padding: 6px 12px;
|
699 |
-
border-radius: 15px;
|
700 |
-
font-size: 0.8rem;
|
701 |
-
display: inline-flex;
|
702 |
-
align-items: center;
|
703 |
-
box-shadow: 0 1px 3px rgba(0,0,0,0.12);
|
704 |
-
transition: all 0.2s ease;
|
705 |
-
font-weight: 500;
|
706 |
-
margin-bottom: 5px;
|
707 |
-
cursor: default;
|
708 |
-
border: 1px solid rgba(0,0,0,0.08);
|
709 |
-
background-color: #6c757d; /* Consistent medium gray color */
|
710 |
-
color: white;
|
711 |
-
}
|
712 |
-
|
713 |
-
.topic-tag:hover {
|
714 |
-
transform: translateY(-1px);
|
715 |
-
box-shadow: 0 3px 5px rgba(0,0,0,0.15);
|
716 |
-
background-color: #5a6268; /* Slightly darker on hover */
|
717 |
-
}
|
718 |
-
|
719 |
-
.topic-tag-icon {
|
720 |
-
margin-right: 5px;
|
721 |
-
font-size: 0.7rem;
|
722 |
-
opacity: 0.8;
|
723 |
-
color: rgba(255, 255, 255, 0.9);
|
724 |
-
}
|
725 |
-
|
726 |
-
.no-tags-message {
|
727 |
-
color: var(--muted-foreground);
|
728 |
-
font-style: italic;
|
729 |
-
padding: 0.75rem;
|
730 |
-
text-align: center;
|
731 |
-
width: 100%;
|
732 |
-
}
|
733 |
-
|
734 |
-
/* Responsive adjustments */
|
735 |
-
@media (max-width: 768px) {
|
736 |
-
.dashboard-container {
|
737 |
-
flex-direction: column;
|
738 |
-
}
|
739 |
-
.chart-container, .sidebar-container {
|
740 |
-
width: 100%;
|
741 |
-
}
|
742 |
-
.app-header {
|
743 |
-
font-size: 1.5rem;
|
744 |
-
}
|
745 |
-
}
|
746 |
-
</style>
|
747 |
-
</head>
|
748 |
-
<body>
|
749 |
-
{%app_entry%}
|
750 |
-
<footer>
|
751 |
-
{%config%}
|
752 |
-
{%scripts%}
|
753 |
-
{%renderer%}
|
754 |
-
</footer>
|
755 |
-
</body>
|
756 |
-
</html>
|
757 |
-
"""
|
758 |
-
|
759 |
-
|
760 |
-
@callback(
|
761 |
-
Output("topic-distribution-header", "children"),
|
762 |
-
Input("stored-data", "data"),
|
763 |
-
)
|
764 |
-
def update_topic_distribution_header(data):
|
765 |
-
if not data:
|
766 |
-
return "Sessions Observatory" # Default when no data is available
|
767 |
-
|
768 |
-
df = pd.DataFrame(data)
|
769 |
-
total_dialogs = df["count"].sum() # Sum up the 'count' column
|
770 |
-
return f"Sessions Observatory ({total_dialogs} dialogs)"
|
771 |
-
|
772 |
-
|
773 |
-
# Define callback to process uploaded file
|
774 |
-
@callback(
|
775 |
-
[
|
776 |
-
Output("stored-data", "data"),
|
777 |
-
Output("upload-status", "children"),
|
778 |
-
Output("upload-status", "style"), # Add style output for visibility
|
779 |
-
Output("main-content", "style"),
|
780 |
-
],
|
781 |
-
[Input("upload-data", "contents")],
|
782 |
-
[State("upload-data", "filename")],
|
783 |
-
)
|
784 |
-
def process_upload(contents, filename):
|
785 |
-
if contents is None:
|
786 |
-
return None, "", {"display": "none"}, {"display": "none"} # Keep hidden
|
787 |
-
|
788 |
-
try:
|
789 |
-
# Parse uploaded file
|
790 |
-
content_type, content_string = contents.split(",")
|
791 |
-
decoded = base64.b64decode(content_string)
|
792 |
-
|
793 |
-
if "csv" in filename.lower():
|
794 |
-
df = pd.read_csv(io.StringIO(decoded.decode("utf-8")))
|
795 |
-
elif "xls" in filename.lower():
|
796 |
-
df = pd.read_excel(io.BytesIO(decoded))
|
797 |
-
else:
|
798 |
-
return (
|
799 |
-
None,
|
800 |
-
html.Div(
|
801 |
-
[
|
802 |
-
html.I(
|
803 |
-
className="fas fa-exclamation-circle",
|
804 |
-
style={"color": "var(--destructive)", "marginRight": "8px"},
|
805 |
-
),
|
806 |
-
"Please upload a CSV or Excel file.",
|
807 |
-
],
|
808 |
-
style={"color": "var(--destructive)"},
|
809 |
-
),
|
810 |
-
{"display": "block"}, # Make visible after error
|
811 |
-
{"display": "none"},
|
812 |
-
)
|
813 |
-
|
814 |
-
# Process the dataframe to get topic statistics
|
815 |
-
topic_stats = analyze_topics(df)
|
816 |
-
|
817 |
-
return (
|
818 |
-
topic_stats.to_dict("records"),
|
819 |
-
html.Div(
|
820 |
-
[
|
821 |
-
html.I(
|
822 |
-
className="fas fa-check-circle",
|
823 |
-
style={
|
824 |
-
"color": "hsl(142.1, 76.2%, 36.3%)",
|
825 |
-
"marginRight": "8px",
|
826 |
-
},
|
827 |
-
),
|
828 |
-
f'Successfully uploaded "{filename}"',
|
829 |
-
],
|
830 |
-
style={"color": "hsl(142.1, 76.2%, 36.3%)"},
|
831 |
-
),
|
832 |
-
{"display": "block"}, # maybe add the above line here too #TODO
|
833 |
-
{
|
834 |
-
"display": "block",
|
835 |
-
"height": "calc(100vh - 40px)",
|
836 |
-
}, # Make visible after successful upload
|
837 |
-
)
|
838 |
-
|
839 |
-
except Exception as e:
|
840 |
-
return (
|
841 |
-
None,
|
842 |
-
html.Div(
|
843 |
-
[
|
844 |
-
html.I(
|
845 |
-
className="fas fa-exclamation-triangle",
|
846 |
-
style={"color": "var(--destructive)", "marginRight": "8px"},
|
847 |
-
),
|
848 |
-
f"Error processing file: {str(e)}",
|
849 |
-
],
|
850 |
-
style={"color": "var(--destructive)"},
|
851 |
-
),
|
852 |
-
{"display": "block"}, # Make visible after error
|
853 |
-
{"display": "none"},
|
854 |
-
)
|
855 |
-
|
856 |
-
|
857 |
-
# Function to analyze the topics and create statistics
|
858 |
-
def analyze_topics(df):
|
859 |
-
# Group by topic name and calculate metrics
|
860 |
-
topic_stats = (
|
861 |
-
df.groupby("deduplicated_topic_name")
|
862 |
-
.agg(
|
863 |
-
count=("id", "count"),
|
864 |
-
negative_count=("Sentiment", lambda x: (x == "negative").sum()),
|
865 |
-
unresolved_count=("Resolution", lambda x: (x == "unresolved").sum()),
|
866 |
-
urgent_count=("Urgency", lambda x: (x == "urgent").sum()),
|
867 |
-
)
|
868 |
-
.reset_index()
|
869 |
-
)
|
870 |
-
|
871 |
-
# Calculate rates
|
872 |
-
topic_stats["negative_rate"] = (
|
873 |
-
topic_stats["negative_count"] / topic_stats["count"] * 100
|
874 |
-
).round(1)
|
875 |
-
topic_stats["unresolved_rate"] = (
|
876 |
-
topic_stats["unresolved_count"] / topic_stats["count"] * 100
|
877 |
-
).round(1)
|
878 |
-
topic_stats["urgent_rate"] = (
|
879 |
-
topic_stats["urgent_count"] / topic_stats["count"] * 100
|
880 |
-
).round(1)
|
881 |
-
|
882 |
-
# Apply binned layout
|
883 |
-
topic_stats = apply_binned_layout(topic_stats)
|
884 |
-
|
885 |
-
return topic_stats
|
886 |
-
|
887 |
-
|
888 |
-
# New binned layout function
|
889 |
-
|
890 |
-
|
891 |
-
def apply_binned_layout(df, padding=0, bin_config=None, max_items_per_row=6):
|
892 |
-
"""
|
893 |
-
Apply a binned layout where bubbles are grouped into rows based on dialog count.
|
894 |
-
Bubbles in each row will be centered horizontally.
|
895 |
-
|
896 |
-
Args:
|
897 |
-
df: DataFrame containing the topic data
|
898 |
-
padding: Padding from edges as percentage
|
899 |
-
bin_config: List of tuples defining bin ranges and descriptions.
|
900 |
-
Example: [(300, None, "300+ dialogs"), (250, 299, "250-299 dialogs"), ...]
|
901 |
-
max_items_per_row: Maximum number of items to display in a single row
|
902 |
-
|
903 |
-
Returns:
|
904 |
-
DataFrame with updated x, y positions
|
905 |
-
"""
|
906 |
-
# Create a copy of the dataframe to avoid modifying the original
|
907 |
-
df_sorted = df.copy()
|
908 |
-
|
909 |
-
# Default bin configuration if none is provided
|
910 |
-
# 8 rows x 6 bubbles is usually good
|
911 |
-
if bin_config is None:
|
912 |
-
bin_config = [
|
913 |
-
(100, None, "100+ dialogs"),
|
914 |
-
(50, 99, "50-99 dialogs"),
|
915 |
-
(25, 49, "25-49 dialogs"),
|
916 |
-
(9, 24, "9-24 dialogs"),
|
917 |
-
(7, 8, "7-8 dialogs"),
|
918 |
-
(5, 7, "5-6 dialogs"),
|
919 |
-
(4, 4, "4 dialogs"),
|
920 |
-
(0, 3, "0-3 dialogs"),
|
921 |
-
]
|
922 |
-
|
923 |
-
# Generate bin descriptions and conditions dynamically
|
924 |
-
bin_descriptions = {}
|
925 |
-
conditions = []
|
926 |
-
bin_values = []
|
927 |
-
|
928 |
-
for i, (lower, upper, description) in enumerate(bin_config):
|
929 |
-
bin_name = f"Bin {i + 1}"
|
930 |
-
bin_descriptions[bin_name] = description
|
931 |
-
bin_values.append(bin_name)
|
932 |
-
|
933 |
-
if upper is None: # No upper limit
|
934 |
-
conditions.append(df_sorted["count"] >= lower)
|
935 |
-
else:
|
936 |
-
conditions.append(
|
937 |
-
(df_sorted["count"] >= lower) & (df_sorted["count"] <= upper)
|
938 |
-
)
|
939 |
-
|
940 |
-
# Apply the conditions to create the bin column
|
941 |
-
df_sorted["bin"] = np.select(conditions, bin_values, default="Bin 8")
|
942 |
-
df_sorted["bin_description"] = df_sorted["bin"].map(bin_descriptions)
|
943 |
-
|
944 |
-
# Sort by bin (ascending to get Bin 1 first) and by count (descending) within each bin
|
945 |
-
df_sorted = df_sorted.sort_values(by=["bin", "count"], ascending=[True, False])
|
946 |
-
|
947 |
-
# Now split bins that have more than max_items_per_row items
|
948 |
-
original_bins = df_sorted["bin"].unique()
|
949 |
-
new_rows = []
|
950 |
-
new_bin_descriptions = bin_descriptions.copy()
|
951 |
-
|
952 |
-
for bin_name in original_bins:
|
953 |
-
bin_mask = df_sorted["bin"] == bin_name
|
954 |
-
bin_group = df_sorted[bin_mask]
|
955 |
-
bin_size = len(bin_group)
|
956 |
-
|
957 |
-
# If bin has more items than max_items_per_row, split it
|
958 |
-
if bin_size > max_items_per_row:
|
959 |
-
# Calculate how many sub-bins we need
|
960 |
-
num_sub_bins = (bin_size + max_items_per_row - 1) // max_items_per_row
|
961 |
-
|
962 |
-
# Calculate items per sub-bin (distribute evenly)
|
963 |
-
items_per_sub_bin = [bin_size // num_sub_bins] * num_sub_bins
|
964 |
-
|
965 |
-
# Distribute the remainder one by one to achieve balance
|
966 |
-
remainder = bin_size % num_sub_bins
|
967 |
-
for i in range(remainder):
|
968 |
-
items_per_sub_bin[i] += 1
|
969 |
-
|
970 |
-
# Original bin description
|
971 |
-
original_description = bin_descriptions[bin_name]
|
972 |
-
|
973 |
-
# Create new row entries and update bin assignments
|
974 |
-
start_idx = 0
|
975 |
-
for i in range(num_sub_bins):
|
976 |
-
# Create new bin name with sub-bin index
|
977 |
-
new_bin_name = f"{bin_name}_{i + 1}"
|
978 |
-
|
979 |
-
# Create new bin description with sub-bin index
|
980 |
-
new_description = f"{original_description} ({i + 1}/{num_sub_bins})"
|
981 |
-
new_bin_descriptions[new_bin_name] = new_description
|
982 |
-
|
983 |
-
# Get slice of dataframe for this sub-bin
|
984 |
-
end_idx = start_idx + items_per_sub_bin[i]
|
985 |
-
sub_bin_rows = bin_group.iloc[start_idx:end_idx].copy()
|
986 |
-
|
987 |
-
# Update bin name and description
|
988 |
-
sub_bin_rows["bin"] = new_bin_name
|
989 |
-
sub_bin_rows["bin_description"] = new_description
|
990 |
-
|
991 |
-
# Add to new rows
|
992 |
-
new_rows.append(sub_bin_rows)
|
993 |
-
|
994 |
-
# Update start index for next iteration
|
995 |
-
start_idx = end_idx
|
996 |
-
|
997 |
-
# Remove the original bin from df_sorted
|
998 |
-
df_sorted = df_sorted[~bin_mask]
|
999 |
-
|
1000 |
-
# Combine the original dataframe (with small bins) and the new split bins
|
1001 |
-
if new_rows:
|
1002 |
-
df_sorted = pd.concat([df_sorted] + new_rows)
|
1003 |
-
|
1004 |
-
# Re-sort with the new bin names
|
1005 |
-
df_sorted = df_sorted.sort_values(by=["bin", "count"], ascending=[True, False])
|
1006 |
-
|
1007 |
-
# Calculate the vertical positions for each row (bin)
|
1008 |
-
bins_with_topics = sorted(df_sorted["bin"].unique())
|
1009 |
-
num_rows = len(bins_with_topics)
|
1010 |
-
|
1011 |
-
available_height = 100 - (2 * padding)
|
1012 |
-
row_height = available_height / num_rows
|
1013 |
-
|
1014 |
-
# Calculate and assign y-positions (vertical positions)
|
1015 |
-
row_positions = {}
|
1016 |
-
for i, bin_name in enumerate(bins_with_topics):
|
1017 |
-
# Calculate row position (centered within its allocated space)
|
1018 |
-
row_pos = padding + i * row_height + (row_height / 2)
|
1019 |
-
row_positions[bin_name] = row_pos
|
1020 |
-
|
1021 |
-
df_sorted["y"] = df_sorted["bin"].map(row_positions)
|
1022 |
-
|
1023 |
-
# Center the bubbles in each row horizontally
|
1024 |
-
center_point = 50 # Middle of the chart (0-100 scale)
|
1025 |
-
for bin_name in bins_with_topics:
|
1026 |
-
# Get topics in this bin
|
1027 |
-
bin_mask = df_sorted["bin"] == bin_name
|
1028 |
-
num_topics_in_bin = bin_mask.sum()
|
1029 |
-
|
1030 |
-
if num_topics_in_bin == 1:
|
1031 |
-
# If there's only one bubble, place it in the center
|
1032 |
-
df_sorted.loc[bin_mask, "x"] = center_point
|
1033 |
-
else:
|
1034 |
-
if num_topics_in_bin < max_items_per_row:
|
1035 |
-
# For fewer bubbles, add a little bit of spacing between them
|
1036 |
-
# Calculate the total width needed
|
1037 |
-
total_width = (num_topics_in_bin - 1) * 17.5 # 10 units between bubbles
|
1038 |
-
# Calculate starting position (to center the group)
|
1039 |
-
start_pos = center_point - (total_width / 2)
|
1040 |
-
# Assign positions
|
1041 |
-
positions = [start_pos + (i * 17.5) for i in range(num_topics_in_bin)]
|
1042 |
-
df_sorted.loc[bin_mask, "x"] = positions
|
1043 |
-
else:
|
1044 |
-
# For multiple bubbles, distribute them evenly around the center
|
1045 |
-
# Calculate the total width needed
|
1046 |
-
total_width = (num_topics_in_bin - 1) * 15 # 15 units between bubbles
|
1047 |
-
|
1048 |
-
# Calculate starting position (to center the group)
|
1049 |
-
start_pos = center_point - (total_width / 2)
|
1050 |
-
|
1051 |
-
# Assign positions
|
1052 |
-
positions = [start_pos + (i * 15) for i in range(num_topics_in_bin)]
|
1053 |
-
df_sorted.loc[bin_mask, "x"] = positions
|
1054 |
-
|
1055 |
-
# Add original rank for reference
|
1056 |
-
df_sorted["size_rank"] = range(1, len(df_sorted) + 1)
|
1057 |
-
|
1058 |
-
return df_sorted
|
1059 |
-
|
1060 |
-
|
1061 |
-
# New function to update positions based on selected size metric
|
1062 |
-
def update_bubble_positions(df: pd.DataFrame) -> pd.DataFrame:
|
1063 |
-
# For the main chart, we always use the binned layout
|
1064 |
-
return apply_binned_layout(df)
|
1065 |
-
|
1066 |
-
|
1067 |
-
# Callback to update the bubble chart
|
1068 |
-
@callback(
|
1069 |
-
Output("bubble-chart", "figure"),
|
1070 |
-
[
|
1071 |
-
Input("stored-data", "data"),
|
1072 |
-
Input("color-metric", "value"),
|
1073 |
-
],
|
1074 |
-
)
|
1075 |
-
def update_bubble_chart(data, color_metric):
|
1076 |
-
if not data:
|
1077 |
-
return go.Figure()
|
1078 |
-
|
1079 |
-
df = pd.DataFrame(data)
|
1080 |
-
|
1081 |
-
# Update positions using binned layout
|
1082 |
-
df = update_bubble_positions(df)
|
1083 |
-
|
1084 |
-
# Always use count for sizing
|
1085 |
-
size_values = df["count"]
|
1086 |
-
raw_sizes = df["count"]
|
1087 |
-
size_title = "Dialog Count"
|
1088 |
-
|
1089 |
-
# Apply log scaling to the size values for better visualization
|
1090 |
-
# To make the smallest bubble bigger, increase the min_size value (currently 2.5).
|
1091 |
-
min_size = 1 # Minimum bubble size
|
1092 |
-
if size_values.max() > size_values.min():
|
1093 |
-
# Log-scale the sizes
|
1094 |
-
log_sizes = np.log1p(size_values)
|
1095 |
-
# Scale to a reasonable range for visualization
|
1096 |
-
# To make the biggest bubble smaller, reduce the multiplier (currently 50).
|
1097 |
-
size_values = (
|
1098 |
-
min_size
|
1099 |
-
+ (log_sizes - log_sizes.min()) / (log_sizes.max() - log_sizes.min()) * 50
|
1100 |
-
)
|
1101 |
-
else:
|
1102 |
-
# If all values are the same, use a default size
|
1103 |
-
size_values = np.ones(len(df)) * 12.5
|
1104 |
-
|
1105 |
-
# DEBUG: Print sizes of bubbles in the first and second bins
|
1106 |
-
bins = sorted(df["bin"].unique())
|
1107 |
-
if len(bins) >= 1:
|
1108 |
-
first_bin = bins[0]
|
1109 |
-
print(f"DEBUG - First bin '{first_bin}' bubble sizes:")
|
1110 |
-
first_bin_df = df[df["bin"] == first_bin]
|
1111 |
-
for idx, row in first_bin_df.iterrows():
|
1112 |
-
print(
|
1113 |
-
f" Topic: {row['deduplicated_topic_name']}, Raw size: {row['count']}, Displayed size: {size_values[idx]}"
|
1114 |
-
)
|
1115 |
-
|
1116 |
-
if len(bins) >= 2:
|
1117 |
-
second_bin = bins[1]
|
1118 |
-
print(f"DEBUG - Second bin '{second_bin}' bubble sizes:")
|
1119 |
-
second_bin_df = df[df["bin"] == second_bin]
|
1120 |
-
for idx, row in second_bin_df.iterrows():
|
1121 |
-
print(
|
1122 |
-
f" Topic: {row['deduplicated_topic_name']}, Raw size: {row['count']}, Displayed size: {size_values[idx]}"
|
1123 |
-
)
|
1124 |
-
|
1125 |
-
# Determine color based on selected metric
|
1126 |
-
if color_metric == "negative_rate":
|
1127 |
-
color_values = df["negative_rate"]
|
1128 |
-
# color_title = "Negative Sentiment (%)"
|
1129 |
-
color_title = "Negativity (%)"
|
1130 |
-
# color_scale = "RdBu" # no ice, RdBu - og is Reds - matter is good too
|
1131 |
-
# color_scale = "Portland"
|
1132 |
-
# color_scale = "RdYlGn_r"
|
1133 |
-
# color_scale = "Teal"
|
1134 |
-
color_scale = "Teal"
|
1135 |
-
|
1136 |
-
elif color_metric == "unresolved_rate":
|
1137 |
-
color_values = df["unresolved_rate"]
|
1138 |
-
color_title = "Unresolved (%)"
|
1139 |
-
# color_scale = "Burg" # og is YlOrRd
|
1140 |
-
# color_scale = "Temps"
|
1141 |
-
# color_scale = "Armyrose"
|
1142 |
-
# color_scale = "YlOrRd"
|
1143 |
-
color_scale = "Teal"
|
1144 |
-
else:
|
1145 |
-
color_values = df["urgent_rate"]
|
1146 |
-
color_title = "Urgency (%)"
|
1147 |
-
# color_scale = "Magenta" # og is Blues
|
1148 |
-
# color_scale = "Tealrose"
|
1149 |
-
# color_scale = "Portland"
|
1150 |
-
color_scale = "Teal"
|
1151 |
-
|
1152 |
-
# Set all text positions to bottom for consistent layout
|
1153 |
-
text_positions = ["bottom center"] * len(df)
|
1154 |
-
|
1155 |
-
# Create enhanced hover text that includes bin information
|
1156 |
-
hover_text = [
|
1157 |
-
f"Topic: {topic}<br>{size_title}: {raw:.1f}<br>{color_title}: {color:.1f}<br>Group: {bin_desc}"
|
1158 |
-
for topic, raw, color, bin_desc in zip(
|
1159 |
-
df["deduplicated_topic_name"],
|
1160 |
-
raw_sizes,
|
1161 |
-
color_values,
|
1162 |
-
df["bin_description"],
|
1163 |
-
)
|
1164 |
-
]
|
1165 |
-
|
1166 |
-
# Create bubble chart
|
1167 |
-
fig = px.scatter(
|
1168 |
-
df,
|
1169 |
-
x="x",
|
1170 |
-
y="y",
|
1171 |
-
size=size_values,
|
1172 |
-
color=color_values,
|
1173 |
-
# text="deduplicated_topic_name", # Remove text here
|
1174 |
-
hover_name="deduplicated_topic_name",
|
1175 |
-
hover_data={
|
1176 |
-
"x": False,
|
1177 |
-
"y": False,
|
1178 |
-
"bin_description": True,
|
1179 |
-
},
|
1180 |
-
size_max=42.5, # Maximum size of the bubbles, change this to adjust the size
|
1181 |
-
color_continuous_scale=color_scale,
|
1182 |
-
custom_data=[
|
1183 |
-
"deduplicated_topic_name",
|
1184 |
-
"count",
|
1185 |
-
"negative_rate",
|
1186 |
-
"unresolved_rate",
|
1187 |
-
"urgent_rate",
|
1188 |
-
"bin_description",
|
1189 |
-
],
|
1190 |
-
)
|
1191 |
-
|
1192 |
-
# Update traces: Remove text related properties
|
1193 |
-
fig.update_traces(
|
1194 |
-
mode="markers", # Remove '+text'
|
1195 |
-
marker=dict(sizemode="area", opacity=0.8, line=dict(width=1, color="white")),
|
1196 |
-
hovertemplate="%{hovertext}<extra></extra>",
|
1197 |
-
hovertext=hover_text,
|
1198 |
-
)
|
1199 |
-
|
1200 |
-
# Create annotations for the bubbles
|
1201 |
-
annotations = []
|
1202 |
-
for i, row in df.iterrows():
|
1203 |
-
# Wrap text every 2 words
|
1204 |
-
words = row["deduplicated_topic_name"].split()
|
1205 |
-
wrapped_text = "<br>".join(
|
1206 |
-
[" ".join(words[i : i + 4]) for i in range(0, len(words), 4)]
|
1207 |
-
)
|
1208 |
-
|
1209 |
-
# Calculate size for vertical offset (approximately based on the bubble size)
|
1210 |
-
# Add vertical offset based on bubble size to place text below the bubble
|
1211 |
-
marker_size = (
|
1212 |
-
size_values[i] / 20 # type: ignore # FIXME: size_values[df.index.get_loc(i)] / 20
|
1213 |
-
) # Adjust this divisor as needed to get proper spacing
|
1214 |
-
|
1215 |
-
annotations.append(
|
1216 |
-
dict(
|
1217 |
-
x=row["x"],
|
1218 |
-
y=row["y"]
|
1219 |
-
+ 0.125 # Adding this so in a row with maximum bubbles, the left one does not overlap with the bin label
|
1220 |
-
+ marker_size, # Add vertical offset to position text below the bubble
|
1221 |
-
text=wrapped_text,
|
1222 |
-
showarrow=False,
|
1223 |
-
textangle=0,
|
1224 |
-
font=dict(
|
1225 |
-
size=10,
|
1226 |
-
# size=8,
|
1227 |
-
color="var(--foreground)",
|
1228 |
-
family="Arial, sans-serif",
|
1229 |
-
weight="bold",
|
1230 |
-
),
|
1231 |
-
xanchor="center",
|
1232 |
-
yanchor="top", # Anchor to top of text box so it hangs below the bubble
|
1233 |
-
bgcolor="rgba(255,255,255,0.7)", # Add semi-transparent background for better readability
|
1234 |
-
bordercolor="rgba(0,0,0,0.1)", # Add a subtle border color
|
1235 |
-
borderwidth=1,
|
1236 |
-
borderpad=1,
|
1237 |
-
# TODO: Radius for rounded corners
|
1238 |
-
)
|
1239 |
-
)
|
1240 |
-
|
1241 |
-
# Add bin labels and separator lines
|
1242 |
-
unique_bins = sorted(df["bin"].unique())
|
1243 |
-
bin_y_positions = [
|
1244 |
-
df[df["bin"] == bin_name]["y"].mean() for bin_name in unique_bins
|
1245 |
-
]
|
1246 |
-
|
1247 |
-
# Dynamically extract bin descriptions
|
1248 |
-
bin_descriptions = df.set_index("bin")["bin_description"].to_dict()
|
1249 |
-
|
1250 |
-
for bin_name, bin_y in zip(unique_bins, bin_y_positions):
|
1251 |
-
# Add horizontal line
|
1252 |
-
fig.add_shape(
|
1253 |
-
type="line",
|
1254 |
-
x0=0,
|
1255 |
-
y0=bin_y,
|
1256 |
-
x1=100,
|
1257 |
-
y1=bin_y,
|
1258 |
-
line=dict(color="rgba(0,0,0,0.1)", width=1, dash="dot"),
|
1259 |
-
layer="below",
|
1260 |
-
)
|
1261 |
-
|
1262 |
-
# Add subtle lines for each bin and bin labels
|
1263 |
-
for bin_name, bin_y in zip(unique_bins, bin_y_positions):
|
1264 |
-
# Add horizontal line
|
1265 |
-
fig.add_shape(
|
1266 |
-
type="line",
|
1267 |
-
x0=0,
|
1268 |
-
y0=bin_y,
|
1269 |
-
x1=100,
|
1270 |
-
y1=bin_y,
|
1271 |
-
line=dict(color="rgba(0,0,0,0.1)", width=1, dash="dot"),
|
1272 |
-
layer="below",
|
1273 |
-
)
|
1274 |
-
|
1275 |
-
# Add bin label annotation
|
1276 |
-
annotations.append(
|
1277 |
-
dict(
|
1278 |
-
x=0, # Position the label on the left side
|
1279 |
-
y=bin_y,
|
1280 |
-
xref="x",
|
1281 |
-
yref="y",
|
1282 |
-
text=bin_descriptions[bin_name],
|
1283 |
-
showarrow=False,
|
1284 |
-
font=dict(size=8.25, color="var(--muted-foreground)"),
|
1285 |
-
align="left",
|
1286 |
-
xanchor="left",
|
1287 |
-
yanchor="middle",
|
1288 |
-
bgcolor="rgba(255,255,255,0.7)",
|
1289 |
-
borderpad=1,
|
1290 |
-
)
|
1291 |
-
)
|
1292 |
-
|
1293 |
-
fig.update_layout(
|
1294 |
-
title=None,
|
1295 |
-
xaxis=dict(
|
1296 |
-
showgrid=False,
|
1297 |
-
zeroline=False,
|
1298 |
-
showticklabels=False,
|
1299 |
-
title=None,
|
1300 |
-
range=[0, 100],
|
1301 |
-
),
|
1302 |
-
yaxis=dict(
|
1303 |
-
showgrid=False,
|
1304 |
-
zeroline=False,
|
1305 |
-
showticklabels=False,
|
1306 |
-
title=None,
|
1307 |
-
range=[0, 100],
|
1308 |
-
autorange="reversed", # Keep largest at top
|
1309 |
-
),
|
1310 |
-
hovermode="closest",
|
1311 |
-
margin=dict(l=0, r=0, t=10, b=10),
|
1312 |
-
coloraxis_colorbar=dict(
|
1313 |
-
title=color_title,
|
1314 |
-
title_font=dict(size=9),
|
1315 |
-
tickfont=dict(size=8),
|
1316 |
-
thickness=10,
|
1317 |
-
len=0.6,
|
1318 |
-
yanchor="middle",
|
1319 |
-
y=0.5,
|
1320 |
-
xpad=0,
|
1321 |
-
),
|
1322 |
-
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
|
1323 |
-
paper_bgcolor="rgba(0,0,0,0)",
|
1324 |
-
plot_bgcolor="rgba(0,0,0,0)",
|
1325 |
-
hoverlabel=dict(bgcolor="white", font_size=12, font_family="Inter"),
|
1326 |
-
annotations=annotations, # Add bin labels as annotations
|
1327 |
-
)
|
1328 |
-
|
1329 |
-
return fig
|
1330 |
-
|
1331 |
-
|
1332 |
-
# Update the update_topic_details callback to use grayscale colors for tags based on frequency
|
1333 |
-
@callback(
|
1334 |
-
[
|
1335 |
-
Output("topic-title", "children"),
|
1336 |
-
Output("topic-metadata", "children"),
|
1337 |
-
Output("topic-metrics", "children"),
|
1338 |
-
Output("important-tags", "children"),
|
1339 |
-
Output("sample-dialogs", "children"),
|
1340 |
-
Output("no-topic-selected", "style"),
|
1341 |
-
],
|
1342 |
-
[Input("bubble-chart", "hoverData"), Input("bubble-chart", "clickData")],
|
1343 |
-
[State("stored-data", "data"), State("upload-data", "contents")],
|
1344 |
-
)
|
1345 |
-
def update_topic_details(hover_data, click_data, stored_data, file_contents):
|
1346 |
-
# Determine which data to use (prioritize click over hover)
|
1347 |
-
hover_info = hover_data or click_data
|
1348 |
-
|
1349 |
-
if not hover_info or not stored_data or not file_contents:
|
1350 |
-
return "", [], [], "", [], {"display": "flex"}
|
1351 |
-
|
1352 |
-
# Extract topic name from the hover data
|
1353 |
-
topic_name = hover_info["points"][0]["customdata"][0]
|
1354 |
-
|
1355 |
-
# Get stored data for this topic
|
1356 |
-
df_stored = pd.DataFrame(stored_data)
|
1357 |
-
topic_data = df_stored[df_stored["deduplicated_topic_name"] == topic_name].iloc[0]
|
1358 |
-
|
1359 |
-
# Get original data to sample conversations
|
1360 |
-
content_type, content_string = file_contents.split(",")
|
1361 |
-
decoded = base64.b64decode(content_string)
|
1362 |
-
|
1363 |
-
if (
|
1364 |
-
content_type
|
1365 |
-
== "data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64"
|
1366 |
-
):
|
1367 |
-
df_full = pd.read_excel(io.BytesIO(decoded))
|
1368 |
-
else: # Assume CSV
|
1369 |
-
df_full = pd.read_csv(io.StringIO(decoded.decode("utf-8")))
|
1370 |
-
|
1371 |
-
# Filter to this topic
|
1372 |
-
topic_conversations = df_full[df_full["deduplicated_topic_name"] == topic_name]
|
1373 |
-
|
1374 |
-
# Create the title
|
1375 |
-
title = html.Div([html.Span(topic_name)])
|
1376 |
-
|
1377 |
-
# Create metadata items
|
1378 |
-
metadata_items = [
|
1379 |
-
html.Div(
|
1380 |
-
[
|
1381 |
-
html.I(className="fas fa-comments metadata-icon"),
|
1382 |
-
html.Span(f"{int(topic_data['count'])} dialogs"),
|
1383 |
-
],
|
1384 |
-
className="metadata-item",
|
1385 |
-
),
|
1386 |
-
]
|
1387 |
-
|
1388 |
-
# Create metrics boxes
|
1389 |
-
metrics_boxes = [
|
1390 |
-
html.Div(
|
1391 |
-
[
|
1392 |
-
html.Div(f"{topic_data['negative_rate']}%", className="metric-value"),
|
1393 |
-
html.Div("Negative Sentiment", className="metric-label"),
|
1394 |
-
],
|
1395 |
-
className="metric-box negative",
|
1396 |
-
),
|
1397 |
-
html.Div(
|
1398 |
-
[
|
1399 |
-
html.Div(f"{topic_data['unresolved_rate']}%", className="metric-value"),
|
1400 |
-
html.Div("Unresolved", className="metric-label"),
|
1401 |
-
],
|
1402 |
-
className="metric-box unresolved",
|
1403 |
-
),
|
1404 |
-
html.Div(
|
1405 |
-
[
|
1406 |
-
html.Div(f"{topic_data['urgent_rate']}%", className="metric-value"),
|
1407 |
-
html.Div("Urgent", className="metric-label"),
|
1408 |
-
],
|
1409 |
-
className="metric-box urgent",
|
1410 |
-
),
|
1411 |
-
]
|
1412 |
-
|
1413 |
-
# New: Extract and process consolidated_tags with improved styling
|
1414 |
-
tags_list = []
|
1415 |
-
for _, row in topic_conversations.iterrows():
|
1416 |
-
tags_str = row.get("consolidated_tags", "")
|
1417 |
-
if pd.notna(tags_str):
|
1418 |
-
tags = [tag.strip() for tag in tags_str.split(",") if tag.strip()]
|
1419 |
-
tags_list.extend(tags)
|
1420 |
-
|
1421 |
-
# Count tag frequencies for better insight
|
1422 |
-
tag_counts = {}
|
1423 |
-
for tag in tags_list:
|
1424 |
-
tag_counts[tag] = tag_counts.get(tag, 0) + 1
|
1425 |
-
|
1426 |
-
# Sort by frequency (most common first) and then alphabetically for ties
|
1427 |
-
sorted_tags = sorted(tag_counts.items(), key=lambda x: (-x[1], x[0]))
|
1428 |
-
|
1429 |
-
# Keep only the top K tags
|
1430 |
-
TOP_K = 15
|
1431 |
-
sorted_tags = sorted_tags[:TOP_K]
|
1432 |
-
|
1433 |
-
if sorted_tags:
|
1434 |
-
# Create beautifully styled tags with count indicators and consistent color
|
1435 |
-
tags_output = html.Div(
|
1436 |
-
[
|
1437 |
-
html.Div(
|
1438 |
-
[
|
1439 |
-
html.I(className="fas fa-tag topic-tag-icon"),
|
1440 |
-
html.Span(f"{tag} ({count})"),
|
1441 |
-
],
|
1442 |
-
className="topic-tag",
|
1443 |
-
)
|
1444 |
-
for tag, count in sorted_tags
|
1445 |
-
],
|
1446 |
-
className="tags-container",
|
1447 |
-
)
|
1448 |
-
else:
|
1449 |
-
tags_output = html.Div(
|
1450 |
-
[
|
1451 |
-
html.I(className="fas fa-info-circle", style={"marginRight": "5px"}),
|
1452 |
-
"No tags found for this topic",
|
1453 |
-
],
|
1454 |
-
className="no-tags-message",
|
1455 |
-
)
|
1456 |
-
|
1457 |
-
# Sample up to 5 random dialogs
|
1458 |
-
sample_size = min(5, len(topic_conversations))
|
1459 |
-
if sample_size > 0:
|
1460 |
-
sample_indices = random.sample(range(len(topic_conversations)), sample_size)
|
1461 |
-
samples = topic_conversations.iloc[sample_indices]
|
1462 |
-
|
1463 |
-
dialog_items = []
|
1464 |
-
for _, row in samples.iterrows():
|
1465 |
-
# Create dialog item with tags
|
1466 |
-
sentiment_tag = html.Span(
|
1467 |
-
row["Sentiment"], className="dialog-tag tag-sentiment"
|
1468 |
-
)
|
1469 |
-
resolution_tag = html.Span(
|
1470 |
-
row["Resolution"], className="dialog-tag tag-resolution"
|
1471 |
-
)
|
1472 |
-
urgency_tag = html.Span(row["Urgency"], className="dialog-tag tag-urgency")
|
1473 |
-
|
1474 |
-
# Add Chat ID tag if 'id' column exists
|
1475 |
-
chat_id_tag = None
|
1476 |
-
if "id" in row:
|
1477 |
-
chat_id_tag = html.Span(
|
1478 |
-
f"Chat ID: {row['id']}", className="dialog-tag tag-chat-id"
|
1479 |
-
)
|
1480 |
-
|
1481 |
-
# Compile all tags, including the new Chat ID tag if available
|
1482 |
-
tags = [sentiment_tag, resolution_tag, urgency_tag]
|
1483 |
-
if chat_id_tag:
|
1484 |
-
tags.append(chat_id_tag)
|
1485 |
-
|
1486 |
-
dialog_items.append(
|
1487 |
-
html.Div(
|
1488 |
-
[
|
1489 |
-
html.Div(row["Summary"], className="dialog-summary"),
|
1490 |
-
html.Div(
|
1491 |
-
tags,
|
1492 |
-
className="dialog-metadata",
|
1493 |
-
),
|
1494 |
-
],
|
1495 |
-
className="dialog-item",
|
1496 |
-
)
|
1497 |
-
)
|
1498 |
-
|
1499 |
-
sample_dialogs = dialog_items
|
1500 |
-
else:
|
1501 |
-
sample_dialogs = [
|
1502 |
-
html.Div(
|
1503 |
-
"No sample dialogs available for this topic.",
|
1504 |
-
style={"color": "var(--muted-foreground)"},
|
1505 |
-
)
|
1506 |
-
]
|
1507 |
-
|
1508 |
-
return (
|
1509 |
-
title,
|
1510 |
-
metadata_items,
|
1511 |
-
metrics_boxes,
|
1512 |
-
tags_output,
|
1513 |
-
sample_dialogs,
|
1514 |
-
{"display": "none"},
|
1515 |
-
)
|
1516 |
-
|
1517 |
-
|
1518 |
-
if __name__ == "__main__":
|
1519 |
-
app.run_server(debug=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|