Spaces:
Running
Running
import os | |
import gradio as gr | |
import pandas as pd | |
from dockling_parser import DocumentParser | |
from dockling_parser.exceptions import ParserError | |
import tempfile | |
import mimetypes | |
TITLE = "π Smart Document Parser" | |
DESCRIPTION = """ | |
A powerful document parsing application that automatically extracts structured information from various document formats. | |
Upload any document (PDF, DOCX, TXT, HTML, Markdown) and get structured information extracted automatically. | |
""" | |
ARTICLE = """ | |
## π Features | |
- Multiple Format Support: PDF, DOCX, TXT, HTML, and Markdown | |
- Rich Information Extraction | |
- Smart Processing with Confidence Scoring | |
- Automatic Format Detection | |
Made with β€οΈ using Docling and Gradio | |
""" | |
# Initialize the document parser | |
parser = DocumentParser() | |
def process_document(file_obj): | |
"""Process uploaded document and return structured information""" | |
if file_obj is None: | |
return ( | |
"Error: No file uploaded", | |
pd.DataFrame(), | |
"No sections available", | |
"No entities available", | |
"Confidence Score: 0.0" | |
) | |
temp_path = None | |
try: | |
# Create temporary file with appropriate extension | |
original_filename = file_obj.name if hasattr(file_obj, 'name') else "uploaded_file.pdf" | |
extension = os.path.splitext(original_filename)[1].lower() | |
if not extension: | |
extension = '.pdf' # Default to PDF if no extension | |
# Create temporary file and write content | |
with tempfile.NamedTemporaryFile(delete=False, suffix=extension) as tmp_file: | |
# Write the content | |
content = file_obj.read() if hasattr(file_obj, 'read') else file_obj | |
if isinstance(content, bytes): | |
tmp_file.write(content) | |
else: | |
tmp_file.write(content.encode('utf-8')) | |
temp_path = tmp_file.name | |
# Parse the document | |
result = parser.parse(temp_path) | |
# Prepare the outputs | |
metadata_df = pd.DataFrame([{ | |
"Property": k, | |
"Value": str(v) | |
} for k, v in result.metadata.dict().items()]) | |
# Extract structured content | |
sections = result.structured_content.get('sections', []) | |
sections_text = "\n\n".join([f"Section {i+1}:\n{section}" for i, section in enumerate(sections)]) | |
# Format entities if available | |
entities = result.structured_content.get('entities', {}) | |
entities_text = "\n".join([f"{entity_type}: {', '.join(entities_list)}" | |
for entity_type, entities_list in entities.items()]) if entities else "No entities detected" | |
return ( | |
result.content, # Main content | |
metadata_df, # Metadata as table | |
sections_text, # Structured sections | |
entities_text, # Named entities | |
f"Confidence Score: {result.confidence_score:.2f}" # Confidence score | |
) | |
except ParserError as e: | |
return ( | |
f"Error parsing document: {str(e)}", | |
pd.DataFrame(), | |
"No sections available", | |
"No entities available", | |
"Confidence Score: 0.0" | |
) | |
except Exception as e: | |
return ( | |
f"Unexpected error: {str(e)}", | |
pd.DataFrame(), | |
"No sections available", | |
"No entities available", | |
"Confidence Score: 0.0" | |
) | |
finally: | |
# Clean up temporary file | |
if temp_path and os.path.exists(temp_path): | |
try: | |
os.unlink(temp_path) | |
except: | |
pass | |
# Create Gradio interface | |
with gr.Blocks(title=TITLE, theme=gr.themes.Soft()) as iface: | |
gr.Markdown(f"# {TITLE}") | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(): | |
file_input = gr.File( | |
label="Upload Document", | |
file_types=[".pdf", ".docx", ".txt", ".html", ".md"], | |
type="filepath" # Changed from binary to filepath | |
) | |
submit_btn = gr.Button("Process Document", variant="primary") | |
with gr.Column(): | |
confidence = gr.Textbox(label="Processing Confidence") | |
with gr.Tabs(): | |
with gr.TabItem("π Content"): | |
content_output = gr.Textbox( | |
label="Extracted Content", | |
lines=10, | |
max_lines=30 | |
) | |
with gr.TabItem("π Metadata"): | |
metadata_output = gr.Dataframe( | |
label="Document Metadata", | |
headers=["Property", "Value"] | |
) | |
with gr.TabItem("π Sections"): | |
sections_output = gr.Textbox( | |
label="Document Sections", | |
lines=10, | |
max_lines=30 | |
) | |
with gr.TabItem("π·οΈ Entities"): | |
entities_output = gr.Textbox( | |
label="Named Entities", | |
lines=5, | |
max_lines=15 | |
) | |
# Handle file submission | |
submit_btn.click( | |
fn=process_document, | |
inputs=[file_input], | |
outputs=[ | |
content_output, | |
metadata_output, | |
sections_output, | |
entities_output, | |
confidence | |
] | |
) | |
gr.Markdown(""" | |
### π Supported Formats | |
- PDF Documents (*.pdf) | |
- Word Documents (*.docx) | |
- Text Files (*.txt) | |
- HTML Files (*.html) | |
- Markdown Files (*.md) | |
""") | |
gr.Markdown(ARTICLE) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch() |