Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,387 Bytes
55866f4 5f0abcc 55866f4 e6d4da8 55866f4 5f0abcc 55866f4 5f0abcc 55866f4 5f0abcc 55866f4 e6d4da8 4b30dce 55866f4 5f0abcc 55866f4 e6d4da8 55866f4 e6d4da8 55866f4 e6d4da8 55866f4 e6d4da8 55866f4 e6d4da8 55866f4 e6d4da8 55866f4 e6d4da8 55866f4 e6d4da8 55866f4 e6d4da8 55866f4 e6d4da8 55866f4 5f0abcc 5f8123c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import base64
import io
import spaces
import gradio as gr
from PIL import Image
import requests
import numpy as np
import PIL
from concept_attention import ConceptAttentionFluxPipeline
# concept_attention_default_args = {
# "model_name": "flux-schnell",
# "device": "cuda",
# "layer_indices": list(range(10, 19)),
# "timesteps": list(range(2, 4)),
# "num_samples": 4,
# "num_inference_steps": 4
# }
IMG_SIZE = 250
def download_image(url):
return Image.open(io.BytesIO(requests.get(url).content))
EXAMPLES = [
[
"A dog by a tree", # prompt
download_image("https://github.com/helblazer811/ConceptAttention/blob/master/images/dog_by_tree.png?raw=true"),
"tree, dog, grass, background", # words
42, # seed
],
[
"A dragon", # prompt
download_image("https://github.com/helblazer811/ConceptAttention/blob/master/images/dragon_image.png?raw=true"),
"dragon, sky, rock, cloud", # words
42, # seed
],
[
"A hot air balloon", # prompt
download_image("https://github.com/helblazer811/ConceptAttention/blob/master/images/hot_air_balloon.png?raw=true"),
"balloon, sky, water, tree", # words
42, # seed
]
]
pipeline = ConceptAttentionFluxPipeline(model_name="flux-schnell", device="cuda")
@spaces.GPU(duration=60)
def process_inputs(prompt, input_image, word_list, seed, num_samples, layer_start_index, timestep_start_index):
print("Processing inputs")
prompt = prompt.strip()
if not word_list.strip():
return None, "Please enter comma-separated words"
concepts = [w.strip() for w in word_list.split(",")]
if input_image is not None:
if isinstance(input_image, np.ndarray):
input_image = Image.fromarray(input_image)
input_image = input_image.convert("RGB")
input_image = input_image.resize((1024, 1024))
elif isinstance(input_image, PIL.Image.Image):
input_image = input_image.convert("RGB")
input_image = input_image.resize((1024, 1024))
pipeline_output = pipeline.encode_image(
image=input_image,
concepts=concepts,
prompt=prompt,
width=1024,
height=1024,
seed=seed,
num_samples=num_samples,
layer_indices=list(range(layer_start_index, 19)),
)
else:
pipeline_output = pipeline.generate_image(
prompt=prompt,
concepts=concepts,
width=1024,
height=1024,
seed=seed,
timesteps=list(range(timestep_start_index, 4)),
num_inference_steps=4,
layer_indices=list(range(layer_start_index, 19)),
)
output_image = pipeline_output.image
concept_heatmaps = pipeline_output.concept_heatmaps
html_elements = []
for concept, heatmap in zip(concepts, concept_heatmaps):
img = heatmap.resize((IMG_SIZE, IMG_SIZE), resample=Image.NEAREST)
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
html = f"""
<div style='text-align: center; margin: 5px; padding: 5px; overflow-x: auto; white-space: nowrap;'>
<h1 style='margin-bottom: 10px;'>{concept}</h1>
<img src='data:image/png;base64,{img_str}' style='width: {IMG_SIZE}px; display: inline-block; height: {IMG_SIZE}px;'>
</div>
"""
html_elements.append(html)
combined_html = "<div style='display: flex; flex-wrap: wrap; justify-content: center;'>" + "".join(html_elements) + "</div>"
return output_image, combined_html, None # None fills input_image with None
with gr.Blocks(
css="""
.container { max-width: 1200px; margin: 0 auto; padding: 20px; }
.title { text-align: center; margin-bottom: 10px; }
.authors { text-align: center; margin-bottom: 10px; }
.affiliations { text-align: center; color: #666; margin-bottom: 10px; }
.content { display: grid; grid-template-columns: 1fr 1fr; gap: 20px; }
.section { }
.input-image { width: 100%; height: 200px; }
.abstract { text-align: center; margin-bottom: 40px; }
"""
) as demo:
with gr.Column(elem_classes="container"):
gr.Markdown("# ConceptAttention: Diffusion Transformers Learn Highly Interpretable Features", elem_classes="title")
gr.Markdown("### Alec Helbling¹, Tuna Meral², Ben Hoover¹³, Pinar Yanardag², Duen Horng (Polo) Chau¹", elem_classes="authors")
gr.Markdown("### ¹Georgia Tech · ²Virginia Tech · ³IBM Research", elem_classes="affiliations")
gr.Markdown(
"""
We introduce ConceptAttention, an approach to interpreting the intermediate representations of diffusion transformers.
The user just gives a list of textual concepts and ConceptAttention will produce a set of saliency maps depicting
the location and intensity of these concepts in generated images. Check out our paper: [here](https://arxiv.org/abs/2502.04320).
""",
elem_classes="abstract"
)
with gr.Row(elem_classes="content"):
with gr.Column(elem_classes="section"):
gr.Markdown("### Input")
prompt = gr.Textbox(label="Enter your prompt")
words = gr.Textbox(label="Enter a list of concepts (comma-separated)")
# gr.HTML("<div style='text-align: center;'> <h3> Or </h3> </div>")
image_input = gr.Image(type="numpy", label="Upload image (optional)", elem_classes="input-image")
# Set up advanced options
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(minimum=0, maximum=10000, step=1, label="Seed", value=42)
num_samples = gr.Slider(minimum=1, maximum=10, step=1, label="Number of Samples", value=4)
layer_start_index = gr.Slider(minimum=0, maximum=18, step=1, label="Layer Start Index", value=10)
timestep_start_index = gr.Slider(minimum=0, maximum=4, step=1, label="Timestep Start Index", value=2)
with gr.Column(elem_classes="section"):
gr.Markdown("### Output")
output_image = gr.Image(type="numpy", label="Output image")
with gr.Row():
submit_btn = gr.Button("Process")
with gr.Row(elem_classes="section"):
saliency_display = gr.HTML(label="Saliency Maps")
submit_btn.click(
fn=process_inputs,
inputs=[prompt, image_input, words, seed, num_samples, layer_start_index, timestep_start_index], outputs=[output_image, saliency_display, image_input]
)
# .then(
# fn=lambda component: gr.update(value=None),
# inputs=[image_input],
# outputs=[]
# )
gr.Examples(examples=EXAMPLES, inputs=[prompt, image_input, words, seed], outputs=[output_image, saliency_display], fn=process_inputs, cache_examples=False)
if __name__ == "__main__":
demo.launch(max_threads=1)
# share=True,
# server_name="0.0.0.0",
# inbrowser=True,
# # share=False,
# server_port=6754,
# quiet=True,
# max_threads=1
# )
|