File size: 7,387 Bytes
55866f4
 
 
 
 
 
5f0abcc
 
 
55866f4
 
 
e6d4da8
 
 
 
 
 
 
 
55866f4
 
5f0abcc
 
 
55866f4
 
5f0abcc
 
 
 
 
 
 
 
 
55866f4
 
5f0abcc
 
 
 
 
 
55866f4
 
 
 
 
e6d4da8
4b30dce
55866f4
 
 
 
 
 
 
5f0abcc
 
 
 
 
 
 
 
55866f4
 
 
 
 
 
 
e6d4da8
 
55866f4
e6d4da8
55866f4
 
 
 
 
 
 
e6d4da8
 
 
55866f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6d4da8
55866f4
 
 
 
 
 
e6d4da8
 
55866f4
e6d4da8
 
 
55866f4
 
 
 
e6d4da8
 
 
 
 
 
 
 
 
 
55866f4
 
 
 
 
e6d4da8
 
 
 
 
 
 
 
 
55866f4
 
 
 
 
 
 
 
 
 
 
 
 
e6d4da8
55866f4
e6d4da8
 
 
 
 
55866f4
 
 
 
5f0abcc
5f8123c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import base64
import io

import spaces
import gradio as gr
from PIL import Image
import requests
import numpy as np
import PIL

from concept_attention import ConceptAttentionFluxPipeline

# concept_attention_default_args = {
#     "model_name": "flux-schnell",
#     "device": "cuda",
#     "layer_indices": list(range(10, 19)),
#     "timesteps": list(range(2, 4)),
#     "num_samples": 4,
#     "num_inference_steps": 4
# }
IMG_SIZE = 250

def download_image(url):
    return Image.open(io.BytesIO(requests.get(url).content))

EXAMPLES = [
    [
        "A dog by a tree",  # prompt
        download_image("https://github.com/helblazer811/ConceptAttention/blob/master/images/dog_by_tree.png?raw=true"),
        "tree, dog, grass, background",  # words
        42,  # seed
    ],
    [
        "A dragon",  # prompt
        download_image("https://github.com/helblazer811/ConceptAttention/blob/master/images/dragon_image.png?raw=true"),
        "dragon, sky, rock, cloud",  # words
        42,  # seed
    ],
       [
        "A hot air balloon",  # prompt
        download_image("https://github.com/helblazer811/ConceptAttention/blob/master/images/hot_air_balloon.png?raw=true"),
        "balloon, sky, water, tree",  # words
        42,  # seed
    ]
]

pipeline = ConceptAttentionFluxPipeline(model_name="flux-schnell", device="cuda")

@spaces.GPU(duration=60)
def process_inputs(prompt, input_image, word_list, seed, num_samples, layer_start_index, timestep_start_index):
    print("Processing inputs")
    prompt = prompt.strip()
    if not word_list.strip():
        return None, "Please enter comma-separated words"

    concepts = [w.strip() for w in word_list.split(",")]

    if input_image is not None:
        if isinstance(input_image, np.ndarray):
            input_image = Image.fromarray(input_image)
            input_image = input_image.convert("RGB")
            input_image = input_image.resize((1024, 1024))
        elif isinstance(input_image, PIL.Image.Image):
            input_image = input_image.convert("RGB")
            input_image = input_image.resize((1024, 1024))

        pipeline_output = pipeline.encode_image(
            image=input_image,
            concepts=concepts,
            prompt=prompt,
            width=1024,
            height=1024,
            seed=seed,
            num_samples=num_samples,
            layer_indices=list(range(layer_start_index, 19)),
        )

    else:
        pipeline_output = pipeline.generate_image(
            prompt=prompt,
            concepts=concepts,
            width=1024,
            height=1024,
            seed=seed,
            timesteps=list(range(timestep_start_index, 4)),
            num_inference_steps=4,
            layer_indices=list(range(layer_start_index, 19)),
        )

    output_image = pipeline_output.image
    concept_heatmaps = pipeline_output.concept_heatmaps

    html_elements = []
    for concept, heatmap in zip(concepts, concept_heatmaps):
        img = heatmap.resize((IMG_SIZE, IMG_SIZE), resample=Image.NEAREST)
        buffered = io.BytesIO()
        img.save(buffered, format="PNG")
        img_str = base64.b64encode(buffered.getvalue()).decode()

        html = f"""
        <div style='text-align: center; margin: 5px; padding: 5px;  overflow-x: auto; white-space: nowrap;'>
            <h1 style='margin-bottom: 10px;'>{concept}</h1>
            <img src='data:image/png;base64,{img_str}' style='width: {IMG_SIZE}px; display: inline-block; height: {IMG_SIZE}px;'>
        </div>
        """
        html_elements.append(html)

    combined_html = "<div style='display: flex; flex-wrap: wrap; justify-content: center;'>" + "".join(html_elements) + "</div>"
    return output_image, combined_html, None # None fills input_image with None


with gr.Blocks(
    css="""
    .container { max-width: 1200px; margin: 0 auto; padding: 20px; }
    .title { text-align: center; margin-bottom: 10px; }
    .authors { text-align: center; margin-bottom: 10px; }
    .affiliations { text-align: center; color: #666; margin-bottom: 10px; }
    .content { display: grid; grid-template-columns: 1fr 1fr; gap: 20px; }
    .section {  }
    .input-image { width: 100%; height: 200px; }
    .abstract { text-align: center; margin-bottom: 40px; }
"""
) as demo:
    with gr.Column(elem_classes="container"):
        gr.Markdown("# ConceptAttention: Diffusion Transformers Learn Highly Interpretable Features", elem_classes="title")
        gr.Markdown("### Alec Helbling¹, Tuna Meral², Ben Hoover¹³, Pinar Yanardag², Duen Horng (Polo) Chau¹", elem_classes="authors")
        gr.Markdown("### ¹Georgia Tech · ²Virginia Tech · ³IBM Research", elem_classes="affiliations")
        gr.Markdown(
            """
                We introduce ConceptAttention, an approach to interpreting the intermediate representations of diffusion transformers. 
                The user just gives a list of textual concepts and ConceptAttention will produce a set of saliency maps depicting 
                the location and intensity of these concepts in generated images. Check out our paper: [here](https://arxiv.org/abs/2502.04320). 
            """,
            elem_classes="abstract"
        )

        with gr.Row(elem_classes="content"):
            with gr.Column(elem_classes="section"):
                gr.Markdown("### Input")
                prompt = gr.Textbox(label="Enter your prompt")
                words = gr.Textbox(label="Enter a list of concepts (comma-separated)")
                # gr.HTML("<div style='text-align: center;'> <h3> Or </h3> </div>")
                image_input = gr.Image(type="numpy", label="Upload image (optional)", elem_classes="input-image")
                # Set up advanced options 
                with gr.Accordion("Advanced Settings", open=False):
                    seed = gr.Slider(minimum=0, maximum=10000, step=1, label="Seed", value=42)
                    num_samples = gr.Slider(minimum=1, maximum=10, step=1, label="Number of Samples", value=4)
                    layer_start_index = gr.Slider(minimum=0, maximum=18, step=1, label="Layer Start Index", value=10)
                    timestep_start_index = gr.Slider(minimum=0, maximum=4, step=1, label="Timestep Start Index", value=2)

            with gr.Column(elem_classes="section"):
                gr.Markdown("### Output")
                output_image = gr.Image(type="numpy", label="Output image")

        with gr.Row():
            submit_btn = gr.Button("Process")

        with gr.Row(elem_classes="section"):
            saliency_display = gr.HTML(label="Saliency Maps")

        submit_btn.click(
            fn=process_inputs, 
            inputs=[prompt, image_input, words, seed, num_samples, layer_start_index, timestep_start_index], outputs=[output_image, saliency_display, image_input]
        )
        # .then(
        #     fn=lambda component: gr.update(value=None),
        #     inputs=[image_input],
        #     outputs=[]
        # )

        gr.Examples(examples=EXAMPLES, inputs=[prompt, image_input, words, seed], outputs=[output_image, saliency_display], fn=process_inputs, cache_examples=False)

if __name__ == "__main__":
    demo.launch(max_threads=1)
    #     share=True,
    #     server_name="0.0.0.0",
    #     inbrowser=True,
    #     # share=False,
    #     server_port=6754,
    #     quiet=True,
    #     max_threads=1
    # )