File size: 5,922 Bytes
55866f4
 
 
ade193e
55866f4
 
 
 
ade193e
55866f4
 
 
5f0abcc
 
 
 
 
 
 
55866f4
 
4f83196
5f0abcc
 
 
 
55866f4
 
 
 
 
4f83196
4b30dce
4f83196
 
 
55866f4
 
4f83196
55866f4
 
 
4f83196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55866f4
 
 
4f83196
55866f4
4f83196
 
55866f4
ade193e
55866f4
ade193e
 
 
 
 
 
 
4f83196
ade193e
55866f4
 
 
 
 
e6d4da8
 
 
55866f4
 
 
 
e6d4da8
 
 
 
 
 
 
 
 
 
55866f4
a8c9996
4f83196
 
 
 
 
0f8eff7
9a2fb25
a8c9996
4f83196
 
 
 
 
 
0f8eff7
9a2fb25
a8c9996
4f83196
 
 
 
 
 
 
 
 
 
 
ade193e
 
 
4f83196
 
 
 
 
 
 
 
55866f4
 
 
4f83196
 
55866f4
 
c4a91ca
4f83196
 
1708f47
4f83196
55866f4
 
5f0abcc
5f8123c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import spaces
import gradio as gr
from PIL import Image
import math

from concept_attention import ConceptAttentionFluxPipeline

IMG_SIZE = 250
COLUMNS = 5

EXAMPLES = [
    [
        "A dog by a tree",  # prompt
        "tree, dog, grass, background",  # words
        42,  # seed
    ],
    [
        "A dragon",  # prompt
        "dragon, sky, rock, cloud",  # words
        42,  # seed
    ],
    [
        "A hot air balloon",  # prompt
        "balloon, sky, water, tree",  # words
        42,  # seed
    ]
]

pipeline = ConceptAttentionFluxPipeline(model_name="flux-schnell", device="cuda")

@spaces.GPU(duration=60)
def process_inputs(prompt, word_list, seed, layer_start_index, timestep_start_index):
    print("Processing inputs")
    assert layer_start_index is not None
    assert timestep_start_index is not None

    prompt = prompt.strip()
    if not word_list.strip():
        gr.exceptions.InputError("words", "Please enter comma-separated words")

    concepts = [w.strip() for w in word_list.split(",")]

    if len(concepts) == 0:
        raise gr.exceptions.InputError("words", "Please enter at least 1 concept")
    
    if len(concepts) > 9:
        raise gr.exceptions.InputError("words", "Please enter at most 9 concepts")

    pipeline_output = pipeline.generate_image(
        prompt=prompt,
        concepts=concepts,
        width=1024,
        height=1024,
        seed=seed,
        timesteps=list(range(timestep_start_index, 4)),
        num_inference_steps=4,
        layer_indices=list(range(layer_start_index, 19)),
        softmax=True if len(concepts) > 1 else False
    )

    output_image = pipeline_output.image
    concept_heatmaps = pipeline_output.concept_heatmaps
    concept_heatmaps = [heatmap.resize((IMG_SIZE, IMG_SIZE), resample=Image.NEAREST) for heatmap in concept_heatmaps]

    heatmaps_and_labels = [(concept_heatmaps[concept_index], concepts[concept_index]) for concept_index in range(len(concepts))]
    all_images_and_labels = [(output_image, "Generated Image")] + heatmaps_and_labels

    num_rows = math.ceil(len(all_images_and_labels) / COLUMNS)

    gallery = gr.Gallery(
        label="Generated images", 
        show_label=True, 
        columns=[COLUMNS], 
        rows=[num_rows],
        object_fit="contain"
    )

    return gallery

with gr.Blocks(
    css="""
    .container { max-width: 1200px; margin: 0 auto; padding: 20px; }
    .title { text-align: center; margin-bottom: 10px; }
    .authors { text-align: center; margin-bottom: 10px; }
    .affiliations { text-align: center; color: #666; margin-bottom: 10px; }
    .abstract { text-align: center; margin-bottom: 40px; }
"""
) as demo:
    with gr.Column(elem_classes="container"):
        gr.Markdown("# ConceptAttention: Diffusion Transformers Learn Highly Interpretable Features", elem_classes="title")
        gr.Markdown("### Alec Helbling¹, Tuna Meral², Ben Hoover¹³, Pinar Yanardag², Duen Horng (Polo) Chau¹", elem_classes="authors")
        gr.Markdown("### ¹Georgia Tech · ²Virginia Tech · ³IBM Research", elem_classes="affiliations")
        gr.Markdown(
            """
                We introduce ConceptAttention, an approach to interpreting the intermediate representations of diffusion transformers. 
                The user just gives a list of textual concepts and ConceptAttention will produce a set of saliency maps depicting 
                the location and intensity of these concepts in generated images. Check out our paper: [here](https://arxiv.org/abs/2502.04320). 
            """,
            elem_classes="abstract"
        )

        with gr.Row(scale=1):
            prompt = gr.Textbox(
                label="Enter your prompt", 
                placeholder="Enter your prompt", 
                value=EXAMPLES[0][0],
                scale=4,
                show_label=True,
                container=False
                # height="80px"
            )
            words = gr.Textbox(
                label="Enter a list of concepts (comma-separated)", 
                placeholder="Enter a list of concepts (comma-separated)", 
                value=EXAMPLES[0][1],
                scale=4,
                show_label=True,
                container=False
                # height="80px"
            )
            submit_btn = gr.Button(
                "Run",
                min_width="100px",
                scale=1
            )

        # generated_image = gr.Image(label="Generated Image", elem_classes="input-image")
        gallery = gr.Gallery(
            label="Generated images", 
            show_label=True, 
            # elem_id="gallery",
            columns=[COLUMNS], 
            rows=[1],
            object_fit="contain", 
            # height="auto"
        )
        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(minimum=0, maximum=10000, step=1, label="Seed", value=42)
            layer_start_index = gr.Slider(minimum=0, maximum=18, step=1, label="Layer Start Index", value=10)
            timestep_start_index = gr.Slider(minimum=0, maximum=4, step=1, label="Timestep Start Index", value=2)


        submit_btn.click(
            fn=process_inputs, 
            inputs=[prompt, words, seed, layer_start_index, timestep_start_index], 
            outputs=[gallery]
        )

        gr.Examples(examples=EXAMPLES, inputs=[prompt, words, seed, layer_start_index, timestep_start_index], outputs=[gallery], fn=process_inputs, cache_examples=False)

        # Automatically process the first example on launch
        # demo.load(process_inputs, inputs=[prompt, words, seed, layer_start_index, timestep_start_index], outputs=[gallery])


if __name__ == "__main__":
    demo.launch(max_threads=1)
    #     share=True,
    #     server_name="0.0.0.0",
    #     inbrowser=True,
    #     # share=False,
    #     server_port=6754,
    #     quiet=True,
    #     max_threads=1
    # )