File size: 5,193 Bytes
55866f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b30dce
55866f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f8123c
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import base64
import io

import spaces
import gradio as gr
from PIL import Image

from concept_attention import ConceptAttentionFluxPipeline

concept_attention_default_args = {
    "model_name": "flux-schnell",
    "device": "cuda",
    "layer_indices": list(range(10, 19)),
    "timesteps": list(range(4)),
    "num_samples": 4,
    "num_inference_steps": 4
}
IMG_SIZE = 250

EXAMPLES = [
    [
        "A fluffy cat sitting on a windowsill",  # prompt
        "cat.jpg",  # image
        "fur, whiskers, eyes",  # words
        42,  # seed
    ],
    # ["Mountain landscape with lake", "cat.jpg", "sky, trees, water", 123],
    # ["Portrait of a young woman", "monkey.png", "face, hair, eyes", 456],
]

pipeline = ConceptAttentionFluxPipeline(model_name="flux-schnell", device="cuda")

@spaces.GPU(duration=60)
def process_inputs(prompt, input_image, word_list, seed):
    print("Processing inputs")
    prompt = prompt.strip()
    if not word_list.strip():
        return None, "Please enter comma-separated words"

    concepts = [w.strip() for w in word_list.split(",")]

    if input_image is not None:
        input_image = Image.fromarray(input_image)
        input_image = input_image.convert("RGB")
        input_image = input_image.resize((1024, 1024))

        pipeline_output = pipeline.encode_image(
            image=input_image,
            concepts=concepts,
            prompt=prompt,
            width=1024,
            height=1024,
            seed=seed,
            num_samples=concept_attention_default_args["num_samples"]
        )
    else:
        pipeline_output = pipeline.generate_image(
            prompt=prompt,
            concepts=concepts,
            width=1024,
            height=1024,
            seed=seed,
            timesteps=concept_attention_default_args["timesteps"],
            num_inference_steps=concept_attention_default_args["num_inference_steps"],
        )

    output_image = pipeline_output.image
    concept_heatmaps = pipeline_output.concept_heatmaps

    html_elements = []
    for concept, heatmap in zip(concepts, concept_heatmaps):
        img = heatmap.resize((IMG_SIZE, IMG_SIZE), resample=Image.NEAREST)
        buffered = io.BytesIO()
        img.save(buffered, format="PNG")
        img_str = base64.b64encode(buffered.getvalue()).decode()

        html = f"""
        <div style='text-align: center; margin: 5px; padding: 5px;  overflow-x: auto; white-space: nowrap;'>
            <h1 style='margin-bottom: 10px;'>{concept}</h1>
            <img src='data:image/png;base64,{img_str}' style='width: {IMG_SIZE}px; display: inline-block; height: {IMG_SIZE}px;'>
        </div>
        """
        html_elements.append(html)

    combined_html = "<div style='display: flex; flex-wrap: wrap; justify-content: center;'>" + "".join(html_elements) + "</div>"
    return output_image, combined_html


with gr.Blocks(
    css="""
    .container { max-width: 1200px; margin: 0 auto; padding: 20px; }
    .title { text-align: center; margin-bottom: 10px; }
    .authors { text-align: center; margin-bottom: 20px; }
    .affiliations { text-align: center; color: #666; margin-bottom: 40px; }
    .content { display: grid; grid-template-columns: 1fr 1fr; gap: 20px; }
    .section { border: 2px solid #ddd; border-radius: 10px; padding: 20px; }
"""
) as demo:
    with gr.Column(elem_classes="container"):
        gr.Markdown("# ConceptAttention: Diffusion Transformers Learn Highly Interpretable Features", elem_classes="title")
        gr.Markdown("**Alec Helbling**¹, **Tuna Meral**², **Ben Hoover**¹³, **Pinar Yanardag**², **Duen Horng (Polo) Chau**¹", elem_classes="authors")
        gr.Markdown("¹Georgia Tech · ²Virginia Tech · ³IBM Research", elem_classes="affiliations")

        with gr.Row(elem_classes="content"):
            with gr.Column(elem_classes="section"):
                gr.Markdown("### Input")
                prompt = gr.Textbox(label="Enter your prompt")
                words = gr.Textbox(label="Enter words (comma-separated)")
                seed = gr.Slider(minimum=0, maximum=10000, step=1, label="Seed", value=42)
                gr.HTML("<div style='text-align: center;'> <h1> Or </h1> </div>")
                image_input = gr.Image(type="numpy", label="Upload image (optional)")

            with gr.Column(elem_classes="section"):
                gr.Markdown("### Output")
                output_image = gr.Image(type="numpy", label="Output image")

        with gr.Row():
            submit_btn = gr.Button("Process")

        with gr.Row(elem_classes="section"):
            saliency_display = gr.HTML(label="Saliency Maps")

        submit_btn.click(
            fn=process_inputs, 
            inputs=[prompt, image_input, words, seed], outputs=[output_image, saliency_display]
        )

        gr.Examples(examples=EXAMPLES, inputs=[prompt, image_input, words, seed], outputs=[output_image, saliency_display], fn=process_inputs, cache_examples=False)

if __name__ == "__main__":
    demo.launch()
    #     share=True,
    #     server_name="0.0.0.0",
    #     inbrowser=True,
    #     # share=False,
    #     server_port=6754,
    #     quiet=True,
    #     max_threads=1
    # )