|
from fastapi import FastAPI |
|
from pydantic import BaseModel |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
import torch |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
model_name = "IDEA-CCNL/Erlangshen-Roberta-330M-Sentiment" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
|
|
|
|
class TextRequest(BaseModel): |
|
text: str |
|
|
|
|
|
@app.post("/predict") |
|
def predict_sentiment(request: TextRequest): |
|
inputs = tokenizer(request.text, return_tensors="pt", truncation=True, padding=True) |
|
outputs = model(**inputs) |
|
prediction = torch.argmax(outputs.logits, dim=1).item() |
|
return {"sentiment": ["负面", "中性", "正面"][prediction]} |
|
|