Spaces:
Running
on
Zero
Running
on
Zero
mjavaid
commited on
Commit
·
199e7c3
1
Parent(s):
b1ec465
first commit
Browse files
app.py
CHANGED
@@ -1,12 +1,12 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
import torch
|
4 |
import os
|
5 |
-
import spaces
|
6 |
|
7 |
hf_token = os.environ["HF_TOKEN"]
|
8 |
|
9 |
-
# Load the Gemma 3 pipeline
|
10 |
pipe = pipeline(
|
11 |
"image-text-to-text",
|
12 |
model="google/gemma-3-4b-it",
|
@@ -14,45 +14,50 @@ pipe = pipeline(
|
|
14 |
torch_dtype=torch.bfloat16,
|
15 |
use_auth_token=hf_token
|
16 |
)
|
|
|
17 |
@spaces.GPU
|
18 |
def generate_response(user_text, user_image):
|
19 |
-
# Check if an image was uploaded.
|
20 |
if user_image is None:
|
21 |
-
return "
|
22 |
|
23 |
-
# Prepare messages with the system prompt and user inputs.
|
24 |
messages = [
|
25 |
{
|
26 |
"role": "system",
|
27 |
"content": [{"type": "text", "text": "You are a helpful assistant."}]
|
28 |
}
|
29 |
]
|
|
|
30 |
user_content = [{"type": "image", "image": user_image}]
|
31 |
if user_text:
|
32 |
user_content.append({"type": "text", "text": user_text})
|
|
|
33 |
messages.append({"role": "user", "content": user_content})
|
34 |
|
35 |
-
# Call the pipeline
|
36 |
output = pipe(text=messages, max_new_tokens=200)
|
37 |
|
38 |
-
# Try to extract the generated content.
|
39 |
try:
|
40 |
response = output[0]["generated_text"][-1]["content"]
|
|
|
41 |
except (KeyError, IndexError, TypeError):
|
42 |
-
response
|
43 |
-
|
44 |
-
return response
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
if __name__ == "__main__":
|
58 |
-
|
|
|
1 |
+
import spaces
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
import torch
|
5 |
import os
|
|
|
6 |
|
7 |
hf_token = os.environ["HF_TOKEN"]
|
8 |
|
9 |
+
# Load the Gemma 3 pipeline
|
10 |
pipe = pipeline(
|
11 |
"image-text-to-text",
|
12 |
model="google/gemma-3-4b-it",
|
|
|
14 |
torch_dtype=torch.bfloat16,
|
15 |
use_auth_token=hf_token
|
16 |
)
|
17 |
+
|
18 |
@spaces.GPU
|
19 |
def generate_response(user_text, user_image):
|
|
|
20 |
if user_image is None:
|
21 |
+
return "Please upload an image (required)"
|
22 |
|
|
|
23 |
messages = [
|
24 |
{
|
25 |
"role": "system",
|
26 |
"content": [{"type": "text", "text": "You are a helpful assistant."}]
|
27 |
}
|
28 |
]
|
29 |
+
|
30 |
user_content = [{"type": "image", "image": user_image}]
|
31 |
if user_text:
|
32 |
user_content.append({"type": "text", "text": user_text})
|
33 |
+
|
34 |
messages.append({"role": "user", "content": user_content})
|
35 |
|
36 |
+
# Call the pipeline with the provided messages
|
37 |
output = pipe(text=messages, max_new_tokens=200)
|
38 |
|
|
|
39 |
try:
|
40 |
response = output[0]["generated_text"][-1]["content"]
|
41 |
+
return response
|
42 |
except (KeyError, IndexError, TypeError):
|
43 |
+
return "Error processing the response. Please try again."
|
|
|
|
|
44 |
|
45 |
+
with gr.Blocks() as demo:
|
46 |
+
gr.Markdown("# Gemma 3 Image Analysis")
|
47 |
+
gr.Markdown("Upload an image and optionally add a prompt to get the model's response.")
|
48 |
+
|
49 |
+
with gr.Row():
|
50 |
+
img = gr.Image(type="pil", label="Upload an image (required)")
|
51 |
+
txt = gr.Textbox(label="Your prompt (optional)", placeholder="Describe what you see in this image")
|
52 |
+
|
53 |
+
output = gr.Textbox(label="Model Response")
|
54 |
+
|
55 |
+
submit_btn = gr.Button("Submit")
|
56 |
+
submit_btn.click(
|
57 |
+
generate_response,
|
58 |
+
inputs=[txt, img],
|
59 |
+
outputs=output
|
60 |
+
)
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
+
demo.launch()
|