File size: 8,620 Bytes
d5ba1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
1bd5399
 
d5ba1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7837ce3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5ba1b1
7837ce3
d5ba1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import re
import pandas as pd
import spacy
from langdetect import detect_langs
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.decomposition import LatentDirichletAllocation
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
from spacy.lang.fr.stop_words import STOP_WORDS as FRENCH_STOP_WORDS
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
import streamlit as st
from datetime import datetime


# Lighter model
MODEL ="cardiffnlp/twitter-xlm-roberta-base-sentiment"

# Cache model loading with fallback for quantization
@st.cache_resource
def load_model():
    device = "cuda" if torch.cuda.is_available() else "cpu"
    print(f"Using device: {device}")
    tokenizer = AutoTokenizer.from_pretrained(MODEL, use_fast=True)
    model = AutoModelForSequenceClassification.from_pretrained(MODEL).to(device)
    
    # Attempt quantization with fallback
    try:
        # Set quantization engine explicitly (fbgemm for x86, qnnpack for ARM)
        torch.backends.quantized.engine = 'fbgemm' if torch.cuda.is_available() else 'qnnpack'
        model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
        print("Model quantized successfully.")
    except RuntimeError as e:
        print(f"Quantization failed: {e}. Using non-quantized model.")
    
    config = AutoConfig.from_pretrained(MODEL)
    return tokenizer, model, config, device

tokenizer, model, config, device = load_model()

nlp_fr = spacy.load("fr_core_news_sm")   
nlp_en = spacy.load("en_core_web_sm")
custom_stop_words = list(ENGLISH_STOP_WORDS.union(FRENCH_STOP_WORDS))

def preprocess(text):
    if text is None:
        return ""
    if not isinstance(text, str):
        try:
            text = str(text)
        except:
            return ""
    new_text = []
    for t in text.split(" "):
        t = '@user' if t.startswith('@') and len(t) > 1 else t
        t = 'http' if t.startswith('http') else t
        new_text.append(t)
    return " ".join(new_text)

def clean_message(text):
    if not isinstance(text, str):
        return ""
    text = text.lower()
    text = text.replace("<media omitted>", "").replace("this message was deleted", "").replace("null", "")
    text = re.sub(r"http\S+|www\S+|https\S+", "", text, flags=re.MULTILINE)
    text = re.sub(r"[^a-zA-ZÀ-ÿ0-9\s]", "", text)
    return text.strip()

def lemmatize_text(text, lang):
    if lang == 'fr':
        doc = nlp_fr(text)
    else:
        doc = nlp_en(text)
    return " ".join([token.lemma_ for token in doc if not token.is_punct])

def preprocess(data):
    pattern = r"^(?P<Date>\d{1,2}/\d{1,2}/\d{2,4}),\s+(?P<Time>[\d:]+(?:\S*\s?[AP]M)?)\s+-\s+(?:(?P<Sender>.*?):\s+)?(?P<Message>.*)$"
    filtered_messages, valid_dates = [], []
    
    for line in data.strip().split("\n"):
        match = re.match(pattern, line)
        if match:
            entry = match.groupdict()
            sender = entry.get("Sender")
            if sender and sender.strip().lower() != "system":
                filtered_messages.append(f"{sender.strip()}: {entry['Message']}")
                valid_dates.append(f"{entry['Date']}, {entry['Time'].replace(' ', ' ')}")
    print("-_____--------------__________----------_____________----------______________")
    def convert_to_target_format(date_str):
        try:
            # Attempt to parse the original date string
            dt = datetime.strptime(date_str, '%d/%m/%Y, %H:%M')
        except ValueError:
            # Return the original date string if parsing fails
            return date_str

        # Extract components without leading zeros
        month = dt.month
        day = dt.day
        year_short = dt.strftime('%y')  # Last two digits of the year
        
        # Convert to 12-hour format and determine AM/PM
        hour_12 = dt.hour % 12
        if hour_12 == 0:
            hour_12 = 12  # Adjust 0 (from 12 AM/PM) to 12
        hour_str = str(hour_12)
        
        # Format minute with leading zero if necessary
        minute_str = f"{dt.minute:02d}"
        
        # Get AM/PM designation
        am_pm = dt.strftime('%p')
        
        # Construct the formatted date string with Unicode narrow space
        return f"{month}/{day}/{year_short}, {hour_str}:{minute_str}\u202f{am_pm}"
  
    converted_dates = [convert_to_target_format(date) for date in valid_dates]


    df = pd.DataFrame({'user_message': filtered_messages, 'message_date': converted_dates})
    df['message_date'] = pd.to_datetime(df['message_date'], format='%m/%d/%y, %I:%M %p', errors='coerce')
    df.rename(columns={'message_date': 'date'}, inplace=True)

    users, messages = [], []
    msg_pattern = r"^(.*?):\s(.*)$"
    for message in df["user_message"]:
        match = re.match(msg_pattern, message)
        if match:
            users.append(match.group(1))
            messages.append(match.group(2))
        else:
            users.append("group_notification")
            messages.append(message)

    df["user"] = users
    df["message"] = messages
    df = df[df["user"] != "group_notification"].reset_index(drop=True)
    df["unfiltered_messages"] = df["message"]
    df["message"] = df["message"].apply(clean_message)
    
    # Extract time-based features
    df['year'] = pd.to_numeric(df['date'].dt.year, downcast='integer')
    df['month'] = df['date'].dt.month_name()
    df['day'] = pd.to_numeric(df['date'].dt.day, downcast='integer')
    df['hour'] = pd.to_numeric(df['date'].dt.hour, downcast='integer')
    df['day_of_week'] = df['date'].dt.day_name()
    
    # Lemmatize messages for topic modeling
    lemmatized_messages = []
    for message in df["message"]:
        try:
            lang = detect_langs(message)
            lemmatized_messages.append(lemmatize_text(message, lang))
        except:
            lemmatized_messages.append("")
    df["lemmatized_message"] = lemmatized_messages
    
    df = df[df["message"].notnull() & (df["message"] != "")].copy()
    df.drop(columns=["user_message"], inplace=True)

    # Perform topic modeling
    vectorizer = CountVectorizer(max_df=0.95, min_df=2, stop_words=custom_stop_words)
    dtm = vectorizer.fit_transform(df['lemmatized_message'])

    # Apply LDA
    lda = LatentDirichletAllocation(n_components=5, random_state=42)
    lda.fit(dtm)

    # Assign topics to messages
    topic_results = lda.transform(dtm)
    df = df.iloc[:topic_results.shape[0]].copy()
    df['topic'] = topic_results.argmax(axis=1)

    # Store topics for visualization
    topics = []
    for topic in lda.components_:
        topics.append([vectorizer.get_feature_names_out()[i] for i in topic.argsort()[-10:]])
    print("Top words for each topic-----------------------------------------------------:")
    print(topics)
    
    return df, topics

def preprocess_for_clustering(df, n_clusters=5):
    df = df[df["lemmatized_message"].notnull() & (df["lemmatized_message"].str.strip() != "")]
    df = df.reset_index(drop=True)

    vectorizer = TfidfVectorizer(max_features=5000, stop_words='english')
    tfidf_matrix = vectorizer.fit_transform(df['lemmatized_message'])
    
    if tfidf_matrix.shape[0] < 2:
        raise ValueError("Not enough messages for clustering.")

    df = df.iloc[:tfidf_matrix.shape[0]].copy()

    kmeans = KMeans(n_clusters=n_clusters, random_state=42)
    clusters = kmeans.fit_predict(tfidf_matrix)
    
    df['cluster'] = clusters
    tsne = TSNE(n_components=2, random_state=42)
    reduced_features = tsne.fit_transform(tfidf_matrix.toarray())
    
    return df, reduced_features, kmeans.cluster_centers_


def predict_sentiment_batch(texts: list, batch_size: int = 32) -> list:
    """Predict sentiment for a batch of texts"""
    if not isinstance(texts, list):
        raise TypeError(f"Expected list of texts, got {type(texts)}")
    
    processed_texts = [preprocess(text) for text in texts]
    
    predictions = []
    for i in range(0, len(processed_texts), batch_size):
        batch = processed_texts[i:i+batch_size]
        
        inputs = tokenizer(
            batch, 
            padding=True, 
            truncation=True, 
            return_tensors="pt", 
            max_length=128
        ).to(device)
        
        with torch.no_grad():
            outputs = model(**inputs)
        
        batch_preds = outputs.logits.argmax(dim=1).cpu().numpy()
        predictions.extend([config.id2label[p] for p in batch_preds])
   
    return predictions