Spaces:
Sleeping
Sleeping
File size: 17,011 Bytes
17ff0d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
"""
Fine-tuning the library models for sequence to sequence.
"""
import logging
import os
import sys
import datasets
import evaluate
import transformers
from transformers import set_seed
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
from .arguments import get_args
from .data.data_collator import DataCollatorForSeq2Seq
from .data.data_utils import load_data
from .data.postprocessors import postprocess_text_for_metric
from .inference.inference_utils import process_text
from .models import load_model
from .schedulers import TokenWiseSimplexDDPMScheduler
from .trainers.trainer_diffusion import DiffusionTrainer
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.25.0")
require_version("datasets>=1.8.0")
logger = logging.getLogger(__name__)
summarization_name_mapping = {
"amazon_reviews_multi": ("review_body", "review_title"),
"big_patent": ("description", "abstract"),
"cnn_dailymail": ("article", "highlights"),
"orange_sum": ("text", "summary"),
"pn_summary": ("article", "summary"),
"psc": ("extract_text", "summary_text"),
"samsum": ("dialogue", "summary"),
"thaisum": ("body", "summary"),
"xglue": ("news_body", "news_title"),
"xsum": ("document", "summary"),
"wiki_summary": ("article", "highlights"),
"multi_news": ("document", "summary"),
}
def main():
# parse args
model_args, data_args, training_args, diffusion_args = get_args()
assert (
data_args.max_target_length + data_args.max_source_length
<= data_args.max_seq_length
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if (
os.path.isdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif (
last_checkpoint is not None and training_args.resume_from_checkpoint is None
):
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# load data
raw_datasets = load_data(data_args, model_args)
# load model
tokenizer, model = load_model(
model_args, data_args, training_args, diffusion_args, logger
)
total_seq2seq_length = data_args.max_source_length + data_args.max_target_length
if (
hasattr(model.config, "max_position_embeddings")
and model.config.max_position_embeddings < total_seq2seq_length
):
if model_args.resize_position_embeddings is None:
logger.warning(
"Increasing the model's number of position embedding vectors from"
f" {model.config.max_position_embeddings} to {total_seq2seq_length}."
)
# position_ids starts from `padding_idx + 1` (padding_index=1) and we therefore requires
# 2 more position embeddings.
model.resize_position_embeddings(
total_seq2seq_length + 2,
with_alternatation=model_args.resize_position_embeddings_alternatively,
)
elif model_args.resize_position_embeddings:
model.resize_position_embeddings(
total_seq2seq_length + 2,
with_alternatation=model_args.resize_position_embeddings_alternatively,
)
else:
raise ValueError(
f"`max_source_length`+`max_target_length` is set to {total_seq2seq_length}, but the model only has"
f" {model.config.max_position_embeddings} position encodings. Consider either reducing"
f" `max_source_length`+`max_target_length` to {model.config.max_position_embeddings} or to automatically resize the"
" model's position encodings by passing `--resize_position_embeddings`."
)
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
if training_args.do_train:
column_names = raw_datasets["train"].column_names
elif training_args.do_eval:
column_names = raw_datasets["validation"].column_names
elif training_args.do_predict:
column_names = raw_datasets["test"].column_names
else:
logger.info(
"There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`."
)
return
# Get the column names for input/target.
dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
assert dataset_columns is not None, "You need to provide the columns names."
text_column, summary_column = dataset_columns[0], dataset_columns[1]
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
"""
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
logger.warning(
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
)
"""
def preprocess_function(examples):
# remove pairs where at least one record is None
inputs, targets = [], []
for i in range(len(examples[text_column])):
if examples[text_column][i] and examples[summary_column][i]:
inputs.append(examples[text_column][i])
targets.append(examples[summary_column][i])
# TODO: we need to process first the target, then cut the inputs to the max_length-target length to use the
# maximum number of tokens.
model_inputs = tokenizer(
inputs,
max_length=data_args.max_source_length,
padding=False,
truncation=True,
)
# Tokenize targets with the `text_target` keyword argument
labels = tokenizer(
text_target=targets,
max_length=max_target_length,
padding=False,
truncation=True,
)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
with training_args.main_process_first(desc="train dataset map pre-processing"):
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
if training_args.do_eval:
max_target_length = data_args.val_max_target_length
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
with training_args.main_process_first(
desc="validation dataset map pre-processing"
):
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
def preprocess_logits_for_metrics(logits):
return logits.argmax(dim=-1)
if training_args.do_predict:
max_target_length = data_args.val_max_target_length
if "test" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
test_dataset = raw_datasets["test"]
if data_args.max_predict_samples is not None:
max_predict_samples = min(len(test_dataset), data_args.max_predict_samples)
test_dataset = test_dataset.select(range(max_predict_samples))
with training_args.main_process_first(
desc="prediction dataset map pre-processing"
):
test_dataset = test_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
# TODO: we may want to add predict back.
# Data collator. To be consistent with the run_mlm.py we need to add `mode`.
data_collator = lambda mode: DataCollatorForSeq2Seq( # noqa: E731
tokenizer,
# Note that if you do not use `pad_to_max_length`, this becomes very slow on multi-gpus.
padding="max_length" if data_args.pad_to_max_length else True,
max_length=data_args.max_seq_length,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
noise_scheduler = TokenWiseSimplexDDPMScheduler(
num_train_timesteps=diffusion_args.num_diffusion_steps,
beta_schedule=diffusion_args.beta_schedule,
simplex_value=diffusion_args.simplex_value,
clip_sample=diffusion_args.clip_sample,
device=training_args.device,
multiply_factor=diffusion_args.multiply_factor,
)
inference_noise_schedulers = [
TokenWiseSimplexDDPMScheduler(
num_train_timesteps=timesteps,
beta_schedule=diffusion_args.beta_schedule,
simplex_value=diffusion_args.simplex_value,
clip_sample=diffusion_args.clip_sample,
device=training_args.device,
multiply_factor=diffusion_args.multiply_factor,
)
for timesteps in diffusion_args.num_inference_diffusion_steps
]
# Metric
metric = evaluate.load("rouge")
def compute_metrics(results):
keys = ["pred_texts_from_simplex_masked", "pred_texts_from_logits_masked"]
metrics = {}
for key in keys:
decoded_preds = (
process_text(results[key])
if not data_args.skip_special_tokens
else results[key]
)
# Note that since decoded_labels is getting updated after post-process, we
# need to compute it here for each key.
decoded_labels = (
process_text(results["gold_texts_masked"])
if not data_args.skip_special_tokens
else results["gold_texts_masked"]
)
decoded_preds, decoded_labels = postprocess_text_for_metric(
"rouge", decoded_preds, decoded_labels
)
key_metrics = metric.compute(
predictions=decoded_preds, references=decoded_labels, use_stemmer=True
)
key_metrics = {k: round(v * 100, 4) for k, v in key_metrics.items()}
key_metrics = {f"{key}_{k}": v for k, v in key_metrics.items()}
metrics.update(key_metrics)
return metrics
# Initialize our Trainer
trainer = DiffusionTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics
if (training_args.do_eval or training_args.do_predict)
else None,
preprocess_logits_for_metrics=preprocess_logits_for_metrics
if (training_args.do_eval or training_args.do_predict)
else None,
noise_scheduler=noise_scheduler,
diffusion_args=diffusion_args,
data_args=data_args,
inference_noise_schedulers=inference_noise_schedulers,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples
if data_args.max_train_samples is not None
else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# We will load the best model here to avoid an issue when do_train is not set.
if training_args.load_states_in_eval_from_model_path and not training_args.do_train:
trainer.state = TrainerState.load_from_json(
os.path.join(model_args.model_name_or_path, "trainer_state.json")
)
if (
training_args.load_best_model_at_end
and trainer.state.best_model_checkpoint is not None
):
checkpoint_path = trainer.state.best_model_checkpoint
else:
checkpoint_path = model_args.model_name_or_path
trainer._load_from_checkpoint(checkpoint_path)
trainer._load_rng_state(checkpoint_path)
# Evaluation
results = {}
# max_length = (
# training_args.generation_max_length
# if training_args.generation_max_length is not None
# else data_args.val_max_target_length
# )
# num_beams = (
# data_args.num_beams
# if data_args.num_beams is not None
# else training_args.generation_num_beams
# )
if training_args.do_eval:
logger.info("*** Evaluate ***")
# TODO: num_beans should be added for ours as well.
# metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval")
metrics = trainer.evaluate()
max_eval_samples = (
data_args.max_eval_samples
if data_args.max_eval_samples is not None
else len(eval_dataset)
)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.do_predict:
logger.info("*** Test ***")
metrics = trainer.evaluate(test_dataset, metric_key_prefix="test")
max_predict_samples = (
data_args.max_predict_samples
if data_args.max_predict_samples is not None
else len(test_dataset)
)
metrics["test_samples"] = min(max_predict_samples, len(test_dataset))
trainer.log_metrics("test", metrics)
trainer.save_metrics("test", metrics)
# TODO: we may want to add predict part back.
return results
if __name__ == "__main__":
main()
|