Spaces:
Sleeping
Sleeping
File size: 10,823 Bytes
17ff0d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import logging
import os
import sys
import datasets
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainerCallback, set_seed
from transformers.trainer_callback import TrainerState
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
from .arguments import get_args
from .data.data_collator import SpanInfillingDataCollator
from .data.data_utils import load_data, tokenize_data_new
from .inference.inference_utils import evaluate_generation
from .models import get_torch_dtype, load_model
from .schedulers import TokenWiseSimplexDDPMScheduler
from .trainers.trainer_diffusion import DiffusionTrainer
from .utils import (
get_last_checkpoint_with_beaker_preemption,
is_nfs_available,
is_weka_available,
resolve_last_checkpoint_vs_resume_from_checkpoint,
set_hf_home,
set_pretraining_dataset,
)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.25.0")
require_version(
"datasets>=2.0.0",
"To fix: pip install -r examples/pytorch/language-modeling/requirements.txt",
)
logger = logging.getLogger(__name__)
# set environment variables
set_hf_home()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def filter_by_length(min_len: int, pad_token_id: int) -> bool:
"""hashable filter function for hf dataset library"""
def func(x):
return min_len <= len([i for i in x["input_ids"] if i != pad_token_id])
return func
def get_compute_metrics(data_args, training_args, model_args):
# Causal language model.
causal_model = AutoModelForCausalLM.from_pretrained(
model_args.autoregressive_eval_model,
torch_dtype=get_torch_dtype(training_args),
attn_implementation="flash_attention_2"
if model_args.use_flash_attention2
else "eager",
).to(training_args.device)
causal_tokenizer = AutoTokenizer.from_pretrained(
model_args.autoregressive_eval_model
)
is_conditional_generation = data_args.conditional_generation is not None
prefix_lm_eval = data_args.conditional_generation in [
"prefix_lm",
"ul2",
"ul2_with_unconditional",
"prefix_with_unconditional",
"ul2_variable",
]
compute_metrics = lambda results: evaluate_generation( # noqa: E731
results,
data_args,
causal_model,
causal_tokenizer,
is_conditional_generation,
prefix_lm_eval=prefix_lm_eval,
skip_special_tokens=data_args.skip_special_tokens,
eval_for_all_metrics=training_args.eval_for_all_metrics,
)
return compute_metrics
# so we evaluate on the first step, useful for checking training is working.
class EvaluateFirstStepCallback(TrainerCallback):
def on_step_end(self, args, state, control, **kwargs):
if state.global_step == 1:
control.should_evaluate = True
def main():
# parse args
model_args, data_args, training_args, diffusion_args = get_args()
set_pretraining_dataset(data_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = get_last_checkpoint_with_beaker_preemption(training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
# load model
tokenizer, model = load_model(
model_args, data_args, training_args, diffusion_args, logger
)
assert model.config.pad_token_id is not None
if training_args.do_train:
raw_datasets = load_data(data_args, model_args)
train_dataset = tokenize_data_new(
data_args, tokenizer, raw_datasets, training_args
)["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
if data_args.min_train_seq_length != 0:
train_dataset = train_dataset.filter(
filter_by_length(
data_args.min_train_seq_length, model.config.pad_token_id
)
)
if data_args.shuffle and data_args.streaming:
train_dataset = train_dataset.shuffle(
seed=training_args.seed, buffer_size=10_000
)
elif data_args.shuffle:
train_dataset = train_dataset.shuffle(seed=training_args.seed)
if training_args.do_eval:
# default to c4
if is_weka_available():
data_file_path = "/data/input/jaket/c4_subset"
elif is_nfs_available():
data_file_path = (
"/net/nfs.cirrascale/allennlp/jaket/simplex-diffusion/c4_subset"
)
else:
# yale
data_file_path = "/home/jt856/documents/simplex-diffusion/raw/c4_subset"
c4_raw_dataset = datasets.IterableDatasetDict(
{
"validation": datasets.load_dataset(
"json",
data_files=os.path.join(
data_file_path, "c4-validation.00000-of-00008.json"
),
)["train"]
}
)
c4_tokenized_datasets = tokenize_data_new(
data_args, tokenizer, c4_raw_dataset, training_args
)
eval_dataset = c4_tokenized_datasets["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
if data_args.min_eval_seq_length != 0:
eval_dataset = eval_dataset.filter(
filter_by_length(
data_args.min_eval_seq_length, model.config.pad_token_id
),
num_proc=data_args.preprocessing_num_workers,
)
def preprocess_logits_for_metrics(logits):
return logits.argmax(dim=-1)
# Data collator
# TODO: fix lambda max_seq_length, extra_padding_ratio:
pad_to_multiple_of_8 = (
data_args.line_by_line
and training_args.fp16
and not data_args.pad_to_max_length
)
data_collator = lambda mode: SpanInfillingDataCollator( # noqa: E731
mode=mode,
data_args=data_args,
tokenizer=tokenizer,
padding="max_length" if data_args.pad_to_max_length else True,
max_length=data_args.max_seq_length,
seed=training_args.seed,
pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
eval_context_size=data_args.eval_context_size,
)
compute_metrics = None
if training_args.do_eval and not training_args.without_compute_metrics:
# call only when necessary
compute_metrics = get_compute_metrics(data_args, training_args, model_args)
# init schedulers
noise_scheduler = TokenWiseSimplexDDPMScheduler(
num_train_timesteps=diffusion_args.num_diffusion_steps,
beta_schedule=diffusion_args.beta_schedule,
simplex_value=diffusion_args.simplex_value,
clip_sample=diffusion_args.clip_sample,
device=training_args.device,
multiply_factor=diffusion_args.multiply_factor,
)
inference_noise_schedulers = [
TokenWiseSimplexDDPMScheduler(
num_train_timesteps=timesteps,
beta_schedule=diffusion_args.beta_schedule,
simplex_value=diffusion_args.simplex_value,
clip_sample=diffusion_args.clip_sample,
device=training_args.device,
multiply_factor=diffusion_args.multiply_factor,
)
for timesteps in diffusion_args.num_inference_diffusion_steps
]
# Initialize our Trainer
trainer = DiffusionTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
preprocess_logits_for_metrics=preprocess_logits_for_metrics
if training_args.do_eval
else None,
noise_scheduler=noise_scheduler,
diffusion_args=diffusion_args,
data_args=data_args,
inference_noise_schedulers=inference_noise_schedulers,
)
trainer.add_callback(EvaluateFirstStepCallback())
# Training
if training_args.do_train:
checkpoint = resolve_last_checkpoint_vs_resume_from_checkpoint(
last_checkpoint,
training_args.resume_from_checkpoint,
)
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
if training_args.load_states_in_eval_from_model_path:
trainer._load_from_checkpoint(model_args.model_name_or_path)
trainer.state = TrainerState.load_from_json(
os.path.join(model_args.model_name_or_path, "trainer_state.json")
)
trainer._load_rng_state(model_args.model_name_or_path)
# np.save("weights.npy", model.vocab_to_hidden_dim_embed.weight.data.numpy())
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = (
data_args.max_eval_samples
if data_args.max_eval_samples is not None
else len(eval_dataset)
)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if __name__ == "__main__":
main()
|