File size: 10,823 Bytes
17ff0d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import logging
import os
import sys

import datasets
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainerCallback, set_seed
from transformers.trainer_callback import TrainerState
from transformers.utils import check_min_version
from transformers.utils.versions import require_version

from .arguments import get_args
from .data.data_collator import SpanInfillingDataCollator
from .data.data_utils import load_data, tokenize_data_new
from .inference.inference_utils import evaluate_generation
from .models import get_torch_dtype, load_model
from .schedulers import TokenWiseSimplexDDPMScheduler
from .trainers.trainer_diffusion import DiffusionTrainer
from .utils import (
    get_last_checkpoint_with_beaker_preemption,
    is_nfs_available,
    is_weka_available,
    resolve_last_checkpoint_vs_resume_from_checkpoint,
    set_hf_home,
    set_pretraining_dataset,
)

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.25.0")

require_version(
    "datasets>=2.0.0",
    "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt",
)

logger = logging.getLogger(__name__)

# set environment variables
set_hf_home()
os.environ["TOKENIZERS_PARALLELISM"] = "false"


def filter_by_length(min_len: int, pad_token_id: int) -> bool:
    """hashable filter function for hf dataset library"""

    def func(x):
        return min_len <= len([i for i in x["input_ids"] if i != pad_token_id])

    return func


def get_compute_metrics(data_args, training_args, model_args):
    # Causal language model.
    causal_model = AutoModelForCausalLM.from_pretrained(
        model_args.autoregressive_eval_model,
        torch_dtype=get_torch_dtype(training_args),
        attn_implementation="flash_attention_2"
        if model_args.use_flash_attention2
        else "eager",
    ).to(training_args.device)
    causal_tokenizer = AutoTokenizer.from_pretrained(
        model_args.autoregressive_eval_model
    )
    is_conditional_generation = data_args.conditional_generation is not None
    prefix_lm_eval = data_args.conditional_generation in [
        "prefix_lm",
        "ul2",
        "ul2_with_unconditional",
        "prefix_with_unconditional",
        "ul2_variable",
    ]
    compute_metrics = lambda results: evaluate_generation(  # noqa: E731
        results,
        data_args,
        causal_model,
        causal_tokenizer,
        is_conditional_generation,
        prefix_lm_eval=prefix_lm_eval,
        skip_special_tokens=data_args.skip_special_tokens,
        eval_for_all_metrics=training_args.eval_for_all_metrics,
    )
    return compute_metrics


# so we evaluate on the first step, useful for checking training is working.
class EvaluateFirstStepCallback(TrainerCallback):
    def on_step_end(self, args, state, control, **kwargs):
        if state.global_step == 1:
            control.should_evaluate = True


def main():
    # parse args
    model_args, data_args, training_args, diffusion_args = get_args()
    set_pretraining_dataset(data_args)

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = get_last_checkpoint_with_beaker_preemption(training_args)

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # load model
    tokenizer, model = load_model(
        model_args, data_args, training_args, diffusion_args, logger
    )
    assert model.config.pad_token_id is not None

    if training_args.do_train:
        raw_datasets = load_data(data_args, model_args)
        train_dataset = tokenize_data_new(
            data_args, tokenizer, raw_datasets, training_args
        )["train"]
        if data_args.max_train_samples is not None:
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
        if data_args.min_train_seq_length != 0:
            train_dataset = train_dataset.filter(
                filter_by_length(
                    data_args.min_train_seq_length, model.config.pad_token_id
                )
            )
        if data_args.shuffle and data_args.streaming:
            train_dataset = train_dataset.shuffle(
                seed=training_args.seed, buffer_size=10_000
            )
        elif data_args.shuffle:
            train_dataset = train_dataset.shuffle(seed=training_args.seed)

    if training_args.do_eval:
        # default to c4
        if is_weka_available():
            data_file_path = "/data/input/jaket/c4_subset"
        elif is_nfs_available():
            data_file_path = (
                "/net/nfs.cirrascale/allennlp/jaket/simplex-diffusion/c4_subset"
            )
        else:
            # yale
            data_file_path = "/home/jt856/documents/simplex-diffusion/raw/c4_subset"
        c4_raw_dataset = datasets.IterableDatasetDict(
            {
                "validation": datasets.load_dataset(
                    "json",
                    data_files=os.path.join(
                        data_file_path, "c4-validation.00000-of-00008.json"
                    ),
                )["train"]
            }
        )
        c4_tokenized_datasets = tokenize_data_new(
            data_args, tokenizer, c4_raw_dataset, training_args
        )
        eval_dataset = c4_tokenized_datasets["validation"]
        if data_args.max_eval_samples is not None:
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
        if data_args.min_eval_seq_length != 0:
            eval_dataset = eval_dataset.filter(
                filter_by_length(
                    data_args.min_eval_seq_length, model.config.pad_token_id
                ),
                num_proc=data_args.preprocessing_num_workers,
            )

        def preprocess_logits_for_metrics(logits):
            return logits.argmax(dim=-1)

    # Data collator
    # TODO: fix lambda max_seq_length, extra_padding_ratio:
    pad_to_multiple_of_8 = (
        data_args.line_by_line
        and training_args.fp16
        and not data_args.pad_to_max_length
    )
    data_collator = lambda mode: SpanInfillingDataCollator(  # noqa: E731
        mode=mode,
        data_args=data_args,
        tokenizer=tokenizer,
        padding="max_length" if data_args.pad_to_max_length else True,
        max_length=data_args.max_seq_length,
        seed=training_args.seed,
        pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
        eval_context_size=data_args.eval_context_size,
    )

    compute_metrics = None
    if training_args.do_eval and not training_args.without_compute_metrics:
        # call only when necessary
        compute_metrics = get_compute_metrics(data_args, training_args, model_args)

    # init schedulers
    noise_scheduler = TokenWiseSimplexDDPMScheduler(
        num_train_timesteps=diffusion_args.num_diffusion_steps,
        beta_schedule=diffusion_args.beta_schedule,
        simplex_value=diffusion_args.simplex_value,
        clip_sample=diffusion_args.clip_sample,
        device=training_args.device,
        multiply_factor=diffusion_args.multiply_factor,
    )
    inference_noise_schedulers = [
        TokenWiseSimplexDDPMScheduler(
            num_train_timesteps=timesteps,
            beta_schedule=diffusion_args.beta_schedule,
            simplex_value=diffusion_args.simplex_value,
            clip_sample=diffusion_args.clip_sample,
            device=training_args.device,
            multiply_factor=diffusion_args.multiply_factor,
        )
        for timesteps in diffusion_args.num_inference_diffusion_steps
    ]

    # Initialize our Trainer
    trainer = DiffusionTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics,
        preprocess_logits_for_metrics=preprocess_logits_for_metrics
        if training_args.do_eval
        else None,
        noise_scheduler=noise_scheduler,
        diffusion_args=diffusion_args,
        data_args=data_args,
        inference_noise_schedulers=inference_noise_schedulers,
    )
    trainer.add_callback(EvaluateFirstStepCallback())

    # Training
    if training_args.do_train:
        checkpoint = resolve_last_checkpoint_vs_resume_from_checkpoint(
            last_checkpoint,
            training_args.resume_from_checkpoint,
        )
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the tokenizer too for easy upload
        metrics = train_result.metrics

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        if training_args.load_states_in_eval_from_model_path:
            trainer._load_from_checkpoint(model_args.model_name_or_path)
            trainer.state = TrainerState.load_from_json(
                os.path.join(model_args.model_name_or_path, "trainer_state.json")
            )
            trainer._load_rng_state(model_args.model_name_or_path)

        # np.save("weights.npy", model.vocab_to_hidden_dim_embed.weight.data.numpy())

        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate()
        max_eval_samples = (
            data_args.max_eval_samples
            if data_args.max_eval_samples is not None
            else len(eval_dataset)
        )
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)


if __name__ == "__main__":
    main()