Spaces:
Sleeping
Sleeping
File size: 19,862 Bytes
17ff0d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import random
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import MaskedLMOutput
from transformers.models.roberta.modeling_roberta import (
RobertaLMHead,
RobertaModel,
RobertaPreTrainedModel,
)
from transformers.utils import logging
from sdlm.utils import convert_to_simplex, mix_values_based_on_self_condition
logger = logging.get_logger(__name__)
class RobertaForDiffusionLM(RobertaPreTrainedModel):
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
_keys_to_ignore_on_load_missing = [
r"position_ids",
r"lm_head.decoder.weight",
r"lm_head.decoder.bias",
]
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.roberta = RobertaModel(config, add_pooling_layer=False)
self.lm_head = RobertaLMHead(config)
# # The LM head weights require special treatment only when they are tied with the word embeddings
# self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
# self.vocab_to_hidden_dim_embed = nn.Linear(
# config.vocab_size, config.hidden_size, bias=False
# )
self.timestep_embed = nn.Linear(1, config.hidden_size, bias=True)
if self.config.self_condition is not None and self.config.deepmind_conditional:
# In this case, this is self-conditioning with conditional generation as done in DeepMind paper.
# See Figure 3 in https://arxiv.org/pdf/2211.15089.pdf.
# Here we concat masked word embeddings, noisy embeddings, mask, and self-conditioning inputs
# and project them to the hidden_size.
self.project_to_hidden_size = nn.Linear(
config.hidden_size * 4, config.hidden_size, bias=False
)
elif (
self.config.self_condition is not None
and not self.config.self_condition # noqa: E713
in [
"logits_addition",
"logits_with_projection_addition",
"logits_max",
"logits_mean",
]
):
if config.self_condition_mlp_projection:
self.project_to_hidden_size = nn.Sequential(
nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False),
ACT2FN[config.hidden_act],
nn.Linear(config.hidden_size, config.hidden_size, bias=False),
)
else:
self.project_to_hidden_size = nn.Linear(
config.hidden_size * 2, config.hidden_size, bias=False
)
# Initialize weights and apply final processing
self.post_init()
# run embedding matrix as linear layer
def vocab_to_hidden_dim_embed(self, input_data):
return F.linear(input_data, self.roberta.embeddings.word_embeddings.weight.T)
# def post_init(self):
# super().post_init()
# self.vocab_to_hidden_dim_embed.weight.data = (
# self.get_input_embeddings().weight.data.T
# )
# import pdb; pdb.set_trace()
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
def get_roberta_empty_tokens(self, shape, device):
if self.config.empty_token_be_mask:
empty_token_ids = (
torch.ones(shape, dtype=torch.int64, device=device) * 50264
)
else:
# Padding token in roberta-large is 1.
empty_token_ids = torch.ones(shape, dtype=torch.int64, device=device)
empty_token_ids[:, 0] = 0
empty_token_ids[:, -1] = 2
return empty_token_ids
def forward(
self,
timesteps: torch.FloatTensor,
input_ids: torch.LongTensor,
simplex: torch.FloatTensor,
span_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
previous_pred: Optional[torch.FloatTensor] = None,
classifier_free_guidance: bool = False,
classifier_free_guidance_in_train: bool = False,
max_timestep: int = 5000,
reduce_loss: str = "mean", # passed to 'reduction' in F.cross_entropy
# unconditional_simplex: torch.FloatTensor = None,
return_all_losses: bool = False, # return per-token loss for all items in batch
previous_hidden: Optional[torch.FloatTensor] = None, # for CDCD predictions...
original_timesteps: Optional[torch.FloatTensor] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
Used to hide legacy arguments that have been deprecated.
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# If we have a mask, we need to mask the simplex values before softmax.
"""
if span_mask is not None:
mask_value = torch.finfo(simplex.dtype).min
mask_value = torch.tensor(mask_value, dtype=simplex.dtype, device=simplex.device)
simplex = torch.where(span_mask[:, :, None], simplex, mask_value)
"""
inputs_probs = F.softmax(simplex, dim=-1)
inputs_embeds = self.vocab_to_hidden_dim_embed(inputs_probs)
if classifier_free_guidance or classifier_free_guidance_in_train:
if self.config.classifier_free_simplex_inputs:
if self.config.classifier_free_uncond_input == "empty_token":
empty_token_ids = self.get_roberta_empty_tokens(
shape=input_ids.shape, device=input_ids.device
)
# TODO: fix the simplex_value later.
unconditional_simplex = convert_to_simplex(
empty_token_ids, 5.0, self.config.vocab_size
)
elif self.config.classifier_free_uncond_input == "noisy_simplex":
simplex_shape = (
input_ids.shape[0],
input_ids.shape[1],
self.config.vocab_size,
)
unconditional_simplex = 5.0 * torch.randn(
simplex_shape, device=input_ids.device
)
else:
raise NotImplementedError
unconditional_probs = F.softmax(unconditional_simplex, dim=-1)
uncond_inputs_embeds = self.vocab_to_hidden_dim_embed(
unconditional_probs
)
else:
empty_token_ids = self.get_roberta_empty_tokens(
shape=input_ids.shape, device=input_ids.device
)
uncond_inputs_embeds = self.get_input_embeddings()(empty_token_ids)
if self.config.self_condition is not None:
if self.config.self_condition_zeros_after_softmax and previous_pred is None:
previous_pred_probs = torch.zeros_like(simplex, device=simplex.device)
else:
if previous_pred is None:
previous_pred = torch.zeros_like(simplex, device=simplex.device)
"""
if span_mask is not None:
mask_value = torch.finfo(previous_pred.dtype).min
mask_value = torch.tensor(mask_value, dtype=previous_pred.dtype, device=previous_pred.device)
previous_pred = torch.where(span_mask[:, :, None], previous_pred, mask_value)
"""
previous_pred_probs = F.softmax(previous_pred, dim=-1)
if not self.config.self_condition_mix_logits_before_weights:
previous_pred = self.vocab_to_hidden_dim_embed(previous_pred_probs)
if not self.config.deepmind_conditional:
# In this setting, we mix the probabilities then apply the weight.
if self.config.self_condition_mix_logits_before_weights:
mixed_logits = mix_values_based_on_self_condition(
self.config.self_condition, simplex, previous_pred
)
mixed_probs = F.softmax(mixed_logits, dim=-1)
inputs_embeds = self.vocab_to_hidden_dim_embed(mixed_probs)
elif self.config.self_condition_mix_before_weights:
mixed_probs = mix_values_based_on_self_condition(
self.config.self_condition, inputs_probs, previous_pred_probs
)
inputs_embeds = self.vocab_to_hidden_dim_embed(mixed_probs)
else:
if self.config.self_condition in [
"logits",
"logits_with_projection",
]:
inputs_embeds = self.project_to_hidden_size(
torch.cat([inputs_embeds, previous_pred], axis=-1)
)
else:
inputs_embeds = mix_values_based_on_self_condition(
self.config.self_condition, inputs_embeds, previous_pred
)
if span_mask is not None:
# Original word embeddings without noise.
if classifier_free_guidance_in_train and random.uniform(0, 1) < 0.1:
inputs_word_embeds = uncond_inputs_embeds
else:
inputs_word_embeds = self.get_input_embeddings()(input_ids)
if self.config.self_condition is not None and self.config.deepmind_conditional:
inputs_embeds = torch.where(
span_mask.unsqueeze(-1), inputs_embeds, torch.zeros_like(previous_pred)
)
previous_pred = torch.where(
span_mask.unsqueeze(-1), previous_pred, torch.zeros_like(previous_pred)
)
inputs_word_embeds = torch.where(
span_mask.unsqueeze(-1),
torch.zeros_like(inputs_word_embeds),
inputs_word_embeds,
)
tiled_mask = span_mask.unsqueeze(-1).repeat(1, 1, self.config.hidden_size)
inputs_embeds = self.project_to_hidden_size(
torch.cat(
[inputs_embeds, inputs_word_embeds, previous_pred, tiled_mask],
axis=-1,
)
)
bsz = input_ids.shape[0]
timesteps_embed = self.timestep_embed(timesteps.view(-1, 1).float()).view(
bsz, -1, self.config.hidden_size
)
inputs_embeds = inputs_embeds + timesteps_embed
if span_mask is not None and not self.config.deepmind_conditional:
# For the unmasked tokens, we only compute their original word embeddings.
# Note that this also sets the self-conditioned inputs wich we are conditioning on
# to their original word embeddings values.
inputs_embeds = torch.where(
span_mask.unsqueeze(-1), inputs_embeds, inputs_word_embeds
)
# TODO: we need to fix classifier-free guidance for the case of deepmind_conditional.
if classifier_free_guidance:
inputs_embeds = torch.cat([uncond_inputs_embeds, inputs_embeds])
outputs = self.roberta(
input_ids=None, # TODO(rabeeh): we can remove this hack when we moved loss to outside.
attention_mask=None, # attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
# import pdb; pdb.set_trace()
masked_lm_loss = None
# In case of classifier-free guidance, since the number of output logits and input token ids do not match
# we do not compute the loss.
if input_ids is not None:
# In case of classifier_free guidance we need to get rid of the unconditional part.
prediction_scores_for_loss = (
prediction_scores.chunk(2)[1]
if classifier_free_guidance
else prediction_scores
)
loss_fct = CrossEntropyLoss(reduction=reduce_loss)
labels = (
torch.where(span_mask, input_ids, -100)
if span_mask is not None
else input_ids
)
if self.config.mask_padding_in_loss:
# also mask padding token loss....
labels = torch.where(labels == self.config.pad_token_id, -100, labels)
masked_lm_loss = loss_fct(
prediction_scores_for_loss.view(-1, self.config.vocab_size),
labels.view(-1),
)
if return_all_losses:
all_lm_losses = masked_lm_loss.view(input_ids.shape[0], -1)
if reduce_loss == "none":
# take the average loss over tokens, not counting the masked tokens.
masked_lm_loss = masked_lm_loss.view(input_ids.shape[0], -1)
masked_lm_loss = masked_lm_loss.sum(dim=-1) / span_mask.sum(dim=-1)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return (
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
)
return MaskedLMOutput(
loss=all_lm_losses if return_all_losses else masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.last_hidden_state,
attentions=outputs.attentions,
)
def resize_position_embeddings(
self, new_num_position_embeddings: int, with_alternatation=False
):
"""
Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embedding matrix. If position embeddings are learned, increasing the size
will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
size will add correct vectors at the end following the position encoding algorithm, whereas reducing
the size will remove vectors from the end.
"""
num_position_embeds_diff = (
new_num_position_embeddings - self.config.max_position_embeddings
)
# no resizing needs to be done if the length stays the same
if num_position_embeds_diff == 0:
return
logger.info(
f"Setting `config.max_position_embeddings={new_num_position_embeddings}`..."
)
self.config.max_position_embeddings = new_num_position_embeddings
old_position_embeddings_weight = (
self.roberta.embeddings.position_embeddings.weight.clone()
)
padding_idx = self.config.pad_token_id
self.roberta.embeddings.position_embeddings = nn.Embedding(
self.config.max_position_embeddings,
self.config.hidden_size,
padding_idx=padding_idx,
)
with torch.no_grad():
if num_position_embeds_diff > 0:
self.roberta.embeddings.position_embeddings.weight[
:-num_position_embeds_diff
] = nn.Parameter(old_position_embeddings_weight)
if with_alternatation:
self.roberta.embeddings.position_embeddings.weight[
-num_position_embeds_diff:
] = nn.Parameter(
old_position_embeddings_weight[:num_position_embeds_diff]
)
else:
self.roberta.embeddings.position_embeddings.weight = nn.Parameter(
old_position_embeddings_weight[:num_position_embeds_diff]
)
# move position_embeddings to correct device
self.roberta.embeddings.position_embeddings.to(self.device)
# Update other needed parameters.
self.roberta.embeddings.position_ids = (
torch.arange(self.config.max_position_embeddings)
.expand((1, -1))
.type_as(self.roberta.embeddings.position_ids)
)
self.roberta.embeddings.token_type_ids = torch.zeros(
self.roberta.embeddings.position_ids.size(), dtype=torch.long
).type_as(self.roberta.embeddings.token_type_ids)
# resize the distance embeddings.
for i in range(self.config.num_hidden_layers):
if (
self.config.position_embedding_type == "relative_key"
or self.config.position_embedding_type == "relative_key_query"
):
self.roberta.encoder.layer[
i
].attention.self.distance_embedding = nn.Embedding(
2 * self.config.max_position_embeddings - 1,
self.attention_head_size,
)
old_distance_embedding_weight = self.layer[
i
].attention.self.distance_embedding.weight.clone()
with torch.no_grad():
if num_position_embeds_diff > 0:
self.roberta.encoder.layer[
i
].attention.self.distance_embedding.weight[
: -2 * num_position_embeds_diff
] = nn.Parameter(
old_distance_embedding_weight
)
else:
self.roberta.encoder.layer[
i
].attention.self.distance_embedding.weight = nn.Parameter(
old_distance_embedding_weight[
: 2 * num_position_embeds_diff
]
)
|