File size: 12,465 Bytes
29232b4 446e6d6 0d55539 29232b4 cdd78b7 5456854 cdd78b7 5456854 60f9e8e cdd78b7 1ae1905 cdd78b7 fee4a44 92220a2 60f9e8e cdd78b7 af424b9 fee4a44 af424b9 5456854 991dd3b d65329e e678e22 3ef53bc 1ae1905 3ef53bc 1ae1905 5456854 3ef53bc 23e5505 3ef53bc 5456854 3ef53bc 5456854 3ef53bc 5456854 cdd78b7 4901fb7 98abcc7 3ef53bc 1ae1905 3ef53bc 1ae1905 3ef53bc 1ae1905 7bae676 3ef53bc 5456854 3ef53bc 5456854 fee4a44 af424b9 fee4a44 af424b9 fee4a44 5456854 3ef53bc 4943e2d 3ef53bc 23e5505 3ef53bc 23e5505 3ef53bc 4943e2d 3ef53bc 23e5505 e0729bd 3ef53bc 68ce31f f4fd6dc 3ef53bc e678e22 cdd78b7 3ef53bc cdd78b7 3ef53bc 6785ddc 5456854 3ef53bc 62027e8 3ef53bc 933e48c 3ef53bc 62027e8 3ef53bc 933e48c 3ef53bc ea8a8bf 62027e8 5456854 3ef53bc 5456854 eb0a349 5456854 e29b7bd cdd78b7 3ef53bc af424b9 1d7bea0 7bae676 3ef53bc 2c6eb6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
#
# SPDX-FileCopyrightText: Hadad <[email protected]>
# SPDX-License-Identifier: Apache-2.0
#
import asyncio
import docx
import gradio as gr
import httpx
import json
import os
import pandas as pd
import pdfplumber
import pytesseract
import random
import requests
import threading
import uuid
import zipfile
import io
from PIL import Image
from pathlib import Path
from pptx import Presentation
from openpyxl import load_workbook
os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev")
INTERNAL_AI_GET_SERVER = os.getenv("INTERNAL_AI_GET_SERVER")
INTERNAL_TRAINING_DATA = os.getenv("INTERNAL_TRAINING_DATA")
SYSTEM_PROMPT_MAPPING = json.loads(os.getenv("SYSTEM_PROMPT_MAPPING", "{}"))
SYSTEM_PROMPT_DEFAULT = os.getenv("DEFAULT_SYSTEM")
LINUX_SERVER_HOSTS = [h for h in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if h]
LINUX_SERVER_HOSTS_MARKED = set()
LINUX_SERVER_HOSTS_ATTEMPTS = {}
LINUX_SERVER_PROVIDER_KEYS = [k for k in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if k]
LINUX_SERVER_PROVIDER_KEYS_MARKED = set()
LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS = {}
LINUX_SERVER_ERRORS = set(map(int, os.getenv("LINUX_SERVER_ERROR", "").split(",")))
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 8)}
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 10)}
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}"))
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}"))
MODEL_CHOICES = list(MODEL_MAPPING.values())
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}"))
DEFAULT_MODEL_KEY = list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else None
META_TAGS = os.getenv("META_TAGS")
ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS", "[]"))
ACTIVE_CANDIDATE = None
class SessionWithID(requests.Session):
def __init__(self):
super().__init__()
self.session_id = str(uuid.uuid4())
def create_session():
return SessionWithID()
def get_available_items(items, marked):
a = [i for i in items if i not in marked]
random.shuffle(a)
return a
def marked_item(item, marked, attempts):
marked.add(item)
attempts[item] = attempts.get(item, 0) + 1
if attempts[item] >= 3:
def remove():
marked.discard(item)
attempts.pop(item, None)
threading.Timer(300, remove).start()
def get_model_key(display):
return next((k for k, v in MODEL_MAPPING.items() if v == display), DEFAULT_MODEL_KEY)
def extract_pdf_content(fp):
content = ""
try:
with pdfplumber.open(fp) as pdf:
for page in pdf.pages:
text = page.extract_text() or ""
content += text + "\n"
if page.images:
img_obj = page.to_image(resolution=300)
for img in page.images:
bbox = (img["x0"], img["top"], img["x1"], img["bottom"])
cropped = img_obj.original.crop(bbox)
ocr_text = pytesseract.image_to_string(cropped)
if ocr_text.strip():
content += ocr_text + "\n"
tables = page.extract_tables()
for table in tables:
for row in table:
cells = [str(cell) for cell in row if cell is not None]
if cells:
content += "\t".join(cells) + "\n"
except Exception as e:
content += f"{fp}: {e}"
return content.strip()
def extract_docx_content(fp):
content = ""
try:
doc = docx.Document(fp)
for para in doc.paragraphs:
content += para.text + "\n"
for table in doc.tables:
for row in table.rows:
cells = [cell.text for cell in row.cells]
content += "\t".join(cells) + "\n"
with zipfile.ZipFile(fp) as z:
for file in z.namelist():
if file.startswith("word/media/"):
data = z.read(file)
try:
img = Image.open(io.BytesIO(data))
ocr_text = pytesseract.image_to_string(img)
if ocr_text.strip():
content += ocr_text + "\n"
except Exception:
pass
except Exception as e:
content += f"{fp}: {e}"
return content.strip()
def extract_excel_content(fp):
content = ""
try:
sheets = pd.read_excel(fp, sheet_name=None)
for name, df in sheets.items():
content += f"Sheet: {name}\n"
content += df.to_csv(index=False) + "\n"
wb = load_workbook(fp, data_only=True)
if wb._images:
for image in wb._images:
img = image.ref
if isinstance(img, bytes):
try:
pil_img = Image.open(io.BytesIO(img))
ocr_text = pytesseract.image_to_string(pil_img)
if ocr_text.strip():
content += ocr_text + "\n"
except Exception:
pass
except Exception as e:
content += f"{fp}: {e}"
return content.strip()
def extract_pptx_content(fp):
content = ""
try:
prs = Presentation(fp)
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text") and shape.text:
content += shape.text + "\n"
if shape.shape_type == 13 and hasattr(shape, "image") and shape.image:
try:
img = Image.open(io.BytesIO(shape.image.blob))
ocr_text = pytesseract.image_to_string(img)
if ocr_text.strip():
content += ocr_text + "\n"
except Exception:
pass
if slide.shapes:
for shape in slide.shapes:
if shape.has_table:
table = shape.table
for row in table.rows:
cells = [cell.text for cell in row.cells]
content += "\t".join(cells) + "\n"
except Exception as e:
content += f"{fp}: {e}"
return content.strip()
def extract_file_content(fp):
ext = Path(fp).suffix.lower()
if ext == ".pdf":
return extract_pdf_content(fp)
elif ext in [".doc", ".docx"]:
return extract_docx_content(fp)
elif ext in [".xlsx", ".xls"]:
return extract_excel_content(fp)
elif ext in [".ppt", ".pptx"]:
return extract_pptx_content(fp)
else:
try:
return Path(fp).read_text(encoding="utf-8").strip()
except Exception as e:
return f"{fp}: {e}"
async def fetch_response_async(host, key, model, msgs, cfg, sid):
for t in [60, 80, 120, 240]:
try:
async with httpx.AsyncClient(timeout=t) as client:
r = await client.post(host, json={"model": model, "messages": msgs, **cfg, "session_id": sid}, headers={"Authorization": f"Bearer {key}"})
if r.status_code in LINUX_SERVER_ERRORS:
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS)
return None
r.raise_for_status()
j = r.json()
if isinstance(j, dict) and j.get("choices"):
ch = j["choices"][0]
if ch.get("message") and isinstance(ch["message"].get("content"), str):
return ch["message"]["content"]
return None
except:
continue
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS)
return None
async def chat_with_model_async(history, user_input, model_display, sess, custom_prompt):
if not get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED) or not get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_ATTEMPTS):
return RESPONSES["RESPONSE_3"]
if not hasattr(sess, "session_id"):
sess.session_id = str(uuid.uuid4())
model_key = get_model_key(model_display)
cfg = MODEL_CONFIG.get(model_key, DEFAULT_CONFIG)
msgs = [{"role": "user", "content": u} for u, _ in history] + [{"role": "assistant", "content": a} for _, a in history if a]
if model_key == DEFAULT_MODEL_KEY and INTERNAL_TRAINING_DATA:
prompt = INTERNAL_TRAINING_DATA
else:
prompt = custom_prompt or SYSTEM_PROMPT_MAPPING.get(model_key, SYSTEM_PROMPT_DEFAULT)
msgs.insert(0, {"role": "system", "content": prompt})
msgs.append({"role": "user", "content": user_input})
global ACTIVE_CANDIDATE
if ACTIVE_CANDIDATE:
res = await fetch_response_async(ACTIVE_CANDIDATE[0], ACTIVE_CANDIDATE[1], model_key, msgs, cfg, sess.session_id)
if res:
return res
ACTIVE_CANDIDATE = None
keys = get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED)
hosts = get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_ATTEMPTS)
cands = [(h, k) for h in hosts for k in keys]
random.shuffle(cands)
for h, k in cands:
res = await fetch_response_async(h, k, model_key, msgs, cfg, sess.session_id)
if res:
ACTIVE_CANDIDATE = (h, k)
return res
return RESPONSES["RESPONSE_2"]
async def respond_async(multi, history, model_display, sess, custom_prompt):
msg = {"text": multi.get("text", "").strip(), "files": multi.get("files", [])}
if not msg["text"] and not msg["files"]:
yield history, gr.MultimodalTextbox(value=None, interactive=True), sess
return
inp = ""
for f in msg["files"]:
if isinstance(f, dict):
fp = f.get("data", f.get("name", ""))
else:
fp = f
inp += f"{Path(fp).name}\n\n{extract_file_content(fp)}\n\n"
if msg["text"]:
inp += msg["text"]
history.append([inp, ""])
ai = await chat_with_model_async(history, inp, model_display, sess, custom_prompt)
history[-1][1] = ""
def to_str(d):
if isinstance(d, (str, int, float)):
return str(d)
if isinstance(d, bytes):
return d.decode("utf-8", errors="ignore")
if isinstance(d, (list, tuple)):
return "".join(map(to_str, d))
if isinstance(d, dict):
return json.dumps(d, ensure_ascii=False)
return repr(d)
for c in ai:
history[-1][1] += to_str(c)
await asyncio.sleep(0.0001)
yield history, gr.MultimodalTextbox(value=None, interactive=True), sess
def change_model(new):
visible = new != MODEL_CHOICES[0]
default = SYSTEM_PROMPT_MAPPING.get(get_model_key(new), SYSTEM_PROMPT_DEFAULT)
return [], create_session(), new, default, gr.update(value=default, visible=visible)
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis:
user_history = gr.State([])
user_session = gr.State(create_session())
selected_model = gr.State(MODEL_CHOICES[0] if MODEL_CHOICES else "")
custom_prompt_state = gr.State("")
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"])
with gr.Row():
msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS)
with gr.Accordion(AI_TYPES["AI_TYPE_6"], open=False):
model_dropdown = gr.Dropdown(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
system_prompt = gr.Textbox(label=AI_TYPES["AI_TYPE_7"], lines=2, interactive=True, visible=False)
model_dropdown.change(fn=change_model, inputs=[model_dropdown], outputs=[user_history, user_session, selected_model, custom_prompt_state, system_prompt])
system_prompt.change(fn=lambda x: x, inputs=[system_prompt], outputs=[custom_prompt_state])
msg.submit(fn=respond_async, inputs=[msg, user_history, selected_model, user_session, custom_prompt_state], outputs=[chatbot, msg, user_session], api_name=INTERNAL_AI_GET_SERVER)
jarvis.launch(max_file_size="1mb")
|