File size: 9,339 Bytes
29232b4
446e6d6
0d55539
29232b4
 
cdd78b7
 
5456854
cdd78b7
5456854
 
60f9e8e
cdd78b7
 
 
 
1ae1905
cdd78b7
92220a2
60f9e8e
cdd78b7
af424b9
 
 
5456854
991dd3b
d65329e
e678e22
7d6f26e
1ae1905
 
 
7d6f26e
1ae1905
 
5456854
4901fb7
5456854
 
 
 
1ae1905
5456854
 
 
 
cdd78b7
4901fb7
98abcc7
 
1ae1905
 
 
 
 
 
 
 
 
 
 
7bae676
78933d2
1ae1905
f4fd6dc
 
 
 
 
e29b7bd
f4fd6dc
5456854
 
1c78115
5456854
af424b9
 
 
 
 
60f9e8e
 
af424b9
 
 
cdd78b7
 
 
af424b9
60f9e8e
af424b9
 
 
60f9e8e
af424b9
 
 
60f9e8e
 
af424b9
 
 
cdd78b7
 
 
af424b9
 
 
 
 
5456854
ea8a8bf
4943e2d
 
 
 
 
cdd78b7
4943e2d
cdd78b7
 
4943e2d
cdd78b7
 
6cd97cb
4943e2d
 
 
 
e0729bd
ea8a8bf
1ae1905
68ce31f
f4fd6dc
 
5456854
 
cdd78b7
7bae676
e678e22
5456854
e678e22
cdd78b7
 
 
 
 
 
 
 
6785ddc
cdd78b7
 
 
 
ea8a8bf
6785ddc
5456854
ea8a8bf
af424b9
 
62027e8
 
af424b9
 
1c78115
cdd78b7
af424b9
 
 
ea8a8bf
62027e8
13c3084
 
 
cdd78b7
13c3084
cdd78b7
13c3084
cdd78b7
13c3084
cdd78b7
62027e8
13c3084
ea8a8bf
62027e8
5456854
 
e29b7bd
5456854
eb0a349
5456854
e29b7bd
cdd78b7
af424b9
1d7bea0
 
7bae676
 
 
cdd78b7
2c6eb6a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#
# SPDX-FileCopyrightText: Hadad <[email protected]>
# SPDX-License-Identifier: Apache-2.0
#

import asyncio
import docx
import gradio as gr
import httpx
import json
import os
import pandas as pd
import pdfplumber
import pytesseract
import random
import requests
import threading
import uuid

from PIL import Image
from pathlib import Path
from pptx import Presentation

os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev")

INTERNAL_AI_GET_SERVER = os.getenv("INTERNAL_AI_GET_SERVER")
INTERNAL_TRAINING_DATA = os.getenv("INTERNAL_TRAINING_DATA")

LINUX_SERVER_HOSTS = [host for host in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if host]
LINUX_SERVER_HOSTS_MARKED = set()
LINUX_SERVER_HOSTS_ATTEMPTS = {}

LINUX_SERVER_PROVIDER_KEYS = [key for key in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if key]
LINUX_SERVER_PROVIDER_KEYS_MARKED = set()
LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS = {}

AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 7)}
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 10)}

MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}"))
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}"))
MODEL_CHOICES = list(MODEL_MAPPING.values()) if MODEL_MAPPING else []
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}"))

META_TAGS = os.getenv("META_TAGS")

ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS", "[]"))

ACTIVE_CANDIDATE = None

def get_available_items(items, marked):
    available = [item for item in items if item not in marked]
    random.shuffle(available)
    return available

def marked_item(item, marked, attempts):
    marked.add(item)
    attempts[item] = attempts.get(item, 0) + 1
    if attempts[item] >= 3:
        def remove_fail():
            marked.discard(item)
            attempts.pop(item, None)
        threading.Timer(3600, remove_fail).start()

class SessionWithID(requests.Session):
    def __init__(self):
        super().__init__()
        self.session_id = str(uuid.uuid4())

def create_session():
    return SessionWithID()

def get_model_key(display_name):
    return next((k for k, v in MODEL_MAPPING.items() if v == display_name), list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else MODEL_CHOICES[0])

def extract_file_content(file_path):
    ext = Path(file_path).suffix.lower()
    content = ""
    try:
        if ext == ".pdf":
            with pdfplumber.open(file_path) as pdf:
                for page in pdf.pages:
                    text = page.extract_text()
                    if text:
                        content += text + "\n"
                    for table in page.extract_tables():
                        table_str = "\n".join([", ".join(row) for row in table if row])
                        content += "\n" + table_str + "\n"
        elif ext in [".doc", ".docx"]:
            doc = docx.Document(file_path)
            for para in doc.paragraphs:
                content += para.text + "\n"
        elif ext in [".xlsx", ".xls"]:
            df = pd.read_excel(file_path)
            content += df.to_csv(index=False)
        elif ext in [".ppt", ".pptx"]:
            prs = Presentation(file_path)
            for slide in prs.slides:
                for shape in slide.shapes:
                    if hasattr(shape, "text") and shape.text:
                        content += shape.text + "\n"
        elif ext in [".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif", ".webp"]:
            pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract"
            image = Image.open(file_path)
            content += pytesseract.image_to_string(image) + "\n"
        else:
            content = Path(file_path).read_text(encoding="utf-8")
    except Exception as e:
        content = f"{file_path}: {e}"
    return content.strip()

async def fetch_response_async(host, provider_key, selected_model, messages, model_config, session_id):
    timeouts = [60, 80, 120, 240]
    for timeout in timeouts:
        try:
            async with httpx.AsyncClient(timeout=timeout) as client:
                data = {"model": selected_model, "messages": messages, **model_config}
                resp = await client.post(host, json={**data, "session_id": session_id}, headers={"Authorization": f"Bearer {provider_key}"})
                resp.raise_for_status()
                resp_json = resp.json()
                if isinstance(resp_json, dict) and resp_json.get("choices"):
                    choice = resp_json["choices"][0]
                    if choice.get("message") and isinstance(choice["message"].get("content"), str):
                        return choice["message"]["content"]
                return RESPONSES["RESPONSE_2"]
        except Exception:
            continue
    marked_item(provider_key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS)
    return RESPONSES["RESPONSE_2"]

async def chat_with_model_async(history, user_input, selected_model_display, sess):
    if not get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED) or not get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_MARKED):
        return RESPONSES["RESPONSE_3"]
    if not hasattr(sess, "session_id"):
        sess.session_id = str(uuid.uuid4())
    selected_model = get_model_key(selected_model_display)
    model_config = MODEL_CONFIG.get(selected_model, DEFAULT_CONFIG)
    messages = [{"role": "user", "content": user} for user, _ in history] + [{"role": "assistant", "content": assistant} for _, assistant in history if assistant]
    if INTERNAL_TRAINING_DATA and MODEL_CHOICES and selected_model_display == MODEL_CHOICES[0]:
        messages.insert(0, {"role": "system", "content": INTERNAL_TRAINING_DATA})
    messages.append({"role": "user", "content": user_input})
    global ACTIVE_CANDIDATE
    if ACTIVE_CANDIDATE:
        result = await fetch_response_async(ACTIVE_CANDIDATE[0], ACTIVE_CANDIDATE[1], selected_model, messages, model_config, sess.session_id)
        if result != RESPONSES["RESPONSE_2"]:
            return result
        ACTIVE_CANDIDATE = None
    keys = get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED)
    hosts = get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_MARKED)
    candidates = [(host, key) for host in hosts for key in keys]
    random.shuffle(candidates)
    for host, key in candidates:
        result = await fetch_response_async(host, key, selected_model, messages, model_config, sess.session_id)
        if result != RESPONSES["RESPONSE_2"]:
            ACTIVE_CANDIDATE = (host, key)
            return result
    return RESPONSES["RESPONSE_2"]

async def respond_async(multi_input, history, selected_model_display, sess):
    message = {"text": multi_input.get("text", "").strip(), "files": multi_input.get("files", [])}
    if not message["text"] and not message["files"]:
        yield history, gr.MultimodalTextbox(value=None, interactive=True), sess
        return
    combined_input = ""
    for file_item in message["files"]:
        file_path = file_item["name"] if isinstance(file_item, dict) and "name" in file_item else file_item
        combined_input += f"{Path(file_path).name}\n\n{extract_file_content(file_path)}\n\n"
    if message["text"]:
        combined_input += message["text"]
    history.append([combined_input, ""])
    ai_response = await chat_with_model_async(history, combined_input, selected_model_display, sess)
    history[-1][1] = ""
    def convert_to_string(data):
        if isinstance(data, (str, int, float)):
            return str(data)
        if isinstance(data, bytes):
            return data.decode("utf-8", errors="ignore")
        if isinstance(data, (list, tuple)):
            return "".join(map(convert_to_string, data))
        if isinstance(data, dict):
            return json.dumps(data, ensure_ascii=False)
        return repr(data)
    for character in ai_response:
        history[-1][1] += convert_to_string(character)
        await asyncio.sleep(0.0001)
        yield history, gr.MultimodalTextbox(value=None, interactive=True), sess

def change_model(new_model_display):
    return [], create_session(), new_model_display

with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis:
    user_history = gr.State([])
    user_session = gr.State(create_session())
    selected_model = gr.State(MODEL_CHOICES[0] if MODEL_CHOICES else "")
    chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"])
    with gr.Row():
        msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS)
    with gr.Accordion(AI_TYPES["AI_TYPE_6"], open=False):
        model_dropdown = gr.Dropdown(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
    model_dropdown.change(fn=change_model, inputs=[model_dropdown], outputs=[user_history, user_session, selected_model], show_progress="full")
    msg.submit(fn=respond_async, inputs=[msg, user_history, selected_model, user_session], outputs=[chatbot, msg, user_session], api_name=INTERNAL_AI_GET_SERVER)
jarvis.launch(max_file_size="1mb")