File size: 9,339 Bytes
29232b4 446e6d6 0d55539 29232b4 cdd78b7 5456854 cdd78b7 5456854 60f9e8e cdd78b7 1ae1905 cdd78b7 92220a2 60f9e8e cdd78b7 af424b9 5456854 991dd3b d65329e e678e22 7d6f26e 1ae1905 7d6f26e 1ae1905 5456854 4901fb7 5456854 1ae1905 5456854 cdd78b7 4901fb7 98abcc7 1ae1905 7bae676 78933d2 1ae1905 f4fd6dc e29b7bd f4fd6dc 5456854 1c78115 5456854 af424b9 60f9e8e af424b9 cdd78b7 af424b9 60f9e8e af424b9 60f9e8e af424b9 60f9e8e af424b9 cdd78b7 af424b9 5456854 ea8a8bf 4943e2d cdd78b7 4943e2d cdd78b7 4943e2d cdd78b7 6cd97cb 4943e2d e0729bd ea8a8bf 1ae1905 68ce31f f4fd6dc 5456854 cdd78b7 7bae676 e678e22 5456854 e678e22 cdd78b7 6785ddc cdd78b7 ea8a8bf 6785ddc 5456854 ea8a8bf af424b9 62027e8 af424b9 1c78115 cdd78b7 af424b9 ea8a8bf 62027e8 13c3084 cdd78b7 13c3084 cdd78b7 13c3084 cdd78b7 13c3084 cdd78b7 62027e8 13c3084 ea8a8bf 62027e8 5456854 e29b7bd 5456854 eb0a349 5456854 e29b7bd cdd78b7 af424b9 1d7bea0 7bae676 cdd78b7 2c6eb6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
#
# SPDX-FileCopyrightText: Hadad <[email protected]>
# SPDX-License-Identifier: Apache-2.0
#
import asyncio
import docx
import gradio as gr
import httpx
import json
import os
import pandas as pd
import pdfplumber
import pytesseract
import random
import requests
import threading
import uuid
from PIL import Image
from pathlib import Path
from pptx import Presentation
os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev")
INTERNAL_AI_GET_SERVER = os.getenv("INTERNAL_AI_GET_SERVER")
INTERNAL_TRAINING_DATA = os.getenv("INTERNAL_TRAINING_DATA")
LINUX_SERVER_HOSTS = [host for host in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if host]
LINUX_SERVER_HOSTS_MARKED = set()
LINUX_SERVER_HOSTS_ATTEMPTS = {}
LINUX_SERVER_PROVIDER_KEYS = [key for key in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if key]
LINUX_SERVER_PROVIDER_KEYS_MARKED = set()
LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS = {}
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 7)}
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 10)}
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}"))
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}"))
MODEL_CHOICES = list(MODEL_MAPPING.values()) if MODEL_MAPPING else []
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}"))
META_TAGS = os.getenv("META_TAGS")
ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS", "[]"))
ACTIVE_CANDIDATE = None
def get_available_items(items, marked):
available = [item for item in items if item not in marked]
random.shuffle(available)
return available
def marked_item(item, marked, attempts):
marked.add(item)
attempts[item] = attempts.get(item, 0) + 1
if attempts[item] >= 3:
def remove_fail():
marked.discard(item)
attempts.pop(item, None)
threading.Timer(3600, remove_fail).start()
class SessionWithID(requests.Session):
def __init__(self):
super().__init__()
self.session_id = str(uuid.uuid4())
def create_session():
return SessionWithID()
def get_model_key(display_name):
return next((k for k, v in MODEL_MAPPING.items() if v == display_name), list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else MODEL_CHOICES[0])
def extract_file_content(file_path):
ext = Path(file_path).suffix.lower()
content = ""
try:
if ext == ".pdf":
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
text = page.extract_text()
if text:
content += text + "\n"
for table in page.extract_tables():
table_str = "\n".join([", ".join(row) for row in table if row])
content += "\n" + table_str + "\n"
elif ext in [".doc", ".docx"]:
doc = docx.Document(file_path)
for para in doc.paragraphs:
content += para.text + "\n"
elif ext in [".xlsx", ".xls"]:
df = pd.read_excel(file_path)
content += df.to_csv(index=False)
elif ext in [".ppt", ".pptx"]:
prs = Presentation(file_path)
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text") and shape.text:
content += shape.text + "\n"
elif ext in [".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif", ".webp"]:
pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract"
image = Image.open(file_path)
content += pytesseract.image_to_string(image) + "\n"
else:
content = Path(file_path).read_text(encoding="utf-8")
except Exception as e:
content = f"{file_path}: {e}"
return content.strip()
async def fetch_response_async(host, provider_key, selected_model, messages, model_config, session_id):
timeouts = [60, 80, 120, 240]
for timeout in timeouts:
try:
async with httpx.AsyncClient(timeout=timeout) as client:
data = {"model": selected_model, "messages": messages, **model_config}
resp = await client.post(host, json={**data, "session_id": session_id}, headers={"Authorization": f"Bearer {provider_key}"})
resp.raise_for_status()
resp_json = resp.json()
if isinstance(resp_json, dict) and resp_json.get("choices"):
choice = resp_json["choices"][0]
if choice.get("message") and isinstance(choice["message"].get("content"), str):
return choice["message"]["content"]
return RESPONSES["RESPONSE_2"]
except Exception:
continue
marked_item(provider_key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS)
return RESPONSES["RESPONSE_2"]
async def chat_with_model_async(history, user_input, selected_model_display, sess):
if not get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED) or not get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_MARKED):
return RESPONSES["RESPONSE_3"]
if not hasattr(sess, "session_id"):
sess.session_id = str(uuid.uuid4())
selected_model = get_model_key(selected_model_display)
model_config = MODEL_CONFIG.get(selected_model, DEFAULT_CONFIG)
messages = [{"role": "user", "content": user} for user, _ in history] + [{"role": "assistant", "content": assistant} for _, assistant in history if assistant]
if INTERNAL_TRAINING_DATA and MODEL_CHOICES and selected_model_display == MODEL_CHOICES[0]:
messages.insert(0, {"role": "system", "content": INTERNAL_TRAINING_DATA})
messages.append({"role": "user", "content": user_input})
global ACTIVE_CANDIDATE
if ACTIVE_CANDIDATE:
result = await fetch_response_async(ACTIVE_CANDIDATE[0], ACTIVE_CANDIDATE[1], selected_model, messages, model_config, sess.session_id)
if result != RESPONSES["RESPONSE_2"]:
return result
ACTIVE_CANDIDATE = None
keys = get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED)
hosts = get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_MARKED)
candidates = [(host, key) for host in hosts for key in keys]
random.shuffle(candidates)
for host, key in candidates:
result = await fetch_response_async(host, key, selected_model, messages, model_config, sess.session_id)
if result != RESPONSES["RESPONSE_2"]:
ACTIVE_CANDIDATE = (host, key)
return result
return RESPONSES["RESPONSE_2"]
async def respond_async(multi_input, history, selected_model_display, sess):
message = {"text": multi_input.get("text", "").strip(), "files": multi_input.get("files", [])}
if not message["text"] and not message["files"]:
yield history, gr.MultimodalTextbox(value=None, interactive=True), sess
return
combined_input = ""
for file_item in message["files"]:
file_path = file_item["name"] if isinstance(file_item, dict) and "name" in file_item else file_item
combined_input += f"{Path(file_path).name}\n\n{extract_file_content(file_path)}\n\n"
if message["text"]:
combined_input += message["text"]
history.append([combined_input, ""])
ai_response = await chat_with_model_async(history, combined_input, selected_model_display, sess)
history[-1][1] = ""
def convert_to_string(data):
if isinstance(data, (str, int, float)):
return str(data)
if isinstance(data, bytes):
return data.decode("utf-8", errors="ignore")
if isinstance(data, (list, tuple)):
return "".join(map(convert_to_string, data))
if isinstance(data, dict):
return json.dumps(data, ensure_ascii=False)
return repr(data)
for character in ai_response:
history[-1][1] += convert_to_string(character)
await asyncio.sleep(0.0001)
yield history, gr.MultimodalTextbox(value=None, interactive=True), sess
def change_model(new_model_display):
return [], create_session(), new_model_display
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis:
user_history = gr.State([])
user_session = gr.State(create_session())
selected_model = gr.State(MODEL_CHOICES[0] if MODEL_CHOICES else "")
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"])
with gr.Row():
msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS)
with gr.Accordion(AI_TYPES["AI_TYPE_6"], open=False):
model_dropdown = gr.Dropdown(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
model_dropdown.change(fn=change_model, inputs=[model_dropdown], outputs=[user_history, user_session, selected_model], show_progress="full")
msg.submit(fn=respond_async, inputs=[msg, user_history, selected_model, user_session], outputs=[chatbot, msg, user_session], api_name=INTERNAL_AI_GET_SERVER)
jarvis.launch(max_file_size="1mb")
|