File size: 10,246 Bytes
29232b4 446e6d6 29232b4 5456854 e29b7bd 60f9e8e f4fd6dc e0729bd 6785ddc 1ae1905 92220a2 083bf02 92220a2 60f9e8e af424b9 5456854 7d6f26e 1ae1905 7d6f26e 1ae1905 5456854 4901fb7 5456854 1ae1905 5456854 4901fb7 98abcc7 1ae1905 f4fd6dc e29b7bd f4fd6dc 5456854 1c78115 5456854 af424b9 60f9e8e af424b9 60f9e8e af424b9 60f9e8e af424b9 60f9e8e af424b9 5456854 1c78115 e0729bd 1ae1905 e0729bd e29b7bd 98abcc7 1ae1905 68ce31f f4fd6dc 5456854 98abcc7 1ae1905 6785ddc 98abcc7 6785ddc 5456854 e29b7bd af424b9 62027e8 af424b9 1c78115 af424b9 e29b7bd 62027e8 13c3084 62027e8 13c3084 39e6933 62027e8 5456854 e29b7bd 5456854 eb0a349 5456854 e29b7bd 5456854 af424b9 1d7bea0 60f9e8e e29b7bd 5456854 eb0a349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
#
# SPDX-FileCopyrightText: Hadad <[email protected]>
# SPDX-License-Identifier: CC-BY-NC-SA-4.0
#
import gradio as gr
import requests
import json
import os
import random
import time
import pytesseract
import pdfplumber
import docx
import pandas as pd
import pptx
import fitz
import io
import uuid
import concurrent.futures
import itertools
import threading
from openai import OpenAI
from optillm.cot_reflection import cot_reflection
from optillm.leap import leap
from optillm.plansearch import plansearch
from optillm.reread import re2_approach
from optillm.rto import round_trip_optimization
from optillm.self_consistency import advanced_self_consistency_approach
from optillm.z3_solver import Z3SymPySolverSystem
from pathlib import Path
from PIL import Image
from pptx import Presentation
os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev")
LINUX_SERVER_HOSTS = [host for host in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if host]
LINUX_SERVER_HOSTS_MARKED = set()
LINUX_SERVER_HOSTS_ATTEMPTS = {}
LINUX_SERVER_PROVIDER_KEYS = [key for key in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if key]
LINUX_SERVER_PROVIDER_KEYS_MARKED = set()
LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS = {}
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 7)}
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 10)}
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}"))
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}"))
MODEL_CHOICES = list(MODEL_MAPPING.values()) if MODEL_MAPPING else []
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}"))
META_TAGS = os.getenv("META_TAGS")
ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS"))
ACTIVE_CANDIDATE = None
def get_available_items(items, marked):
available = [item for item in items if item not in marked]
random.shuffle(available)
return available
def marked_item(item, marked, attempts):
marked.add(item)
attempts[item] = attempts.get(item, 0) + 1
if attempts[item] >= 3:
def remove_fail():
marked.discard(item)
if item in attempts:
del attempts[item]
threading.Timer(300, remove_fail).start()
class SessionWithID(requests.Session):
def __init__(self):
super().__init__()
self.session_id = str(uuid.uuid4())
def create_session():
return SessionWithID()
def get_model_key(display_name):
return next((k for k, v in MODEL_MAPPING.items() if v == display_name), list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else MODEL_CHOICES[0])
def extract_file_content(file_path):
ext = Path(file_path).suffix.lower()
content = ""
try:
if ext == ".pdf":
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
text = page.extract_text()
if text:
content += text + "\n"
tables = page.extract_tables()
if tables:
for table in tables:
table_str = "\n".join([", ".join(row) for row in table if row])
content += "\n" + table_str + "\n"
elif ext in [".doc", ".docx"]:
doc = docx.Document(file_path)
for para in doc.paragraphs:
content += para.text + "\n"
elif ext in [".xlsx", ".xls"]:
df = pd.read_excel(file_path)
content += df.to_csv(index=False)
elif ext in [".ppt", ".pptx"]:
prs = Presentation(file_path)
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text") and shape.text:
content += shape.text + "\n"
elif ext in [".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif", ".webp"]:
try:
pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract"
image = Image.open(file_path)
text = pytesseract.image_to_string(image)
content += text + "\n"
except Exception as e:
content += f"{e}\n"
else:
content = Path(file_path).read_text(encoding="utf-8")
except Exception as e:
content = f"{file_path}: {e}"
return content.strip()
def process_ai_response(ai_text):
try:
result = round_trip_optimization(ai_text)
result = re2_approach(result)
result = cot_reflection(result)
result = advanced_self_consistency_approach(result)
result = plansearch(result)
result = leap(result)
solver = Z3SymPySolverSystem()
result = solver.solve(result)
return result
except Exception:
return ai_text
def fetch_response(host, provider_key, selected_model, messages, model_config, session_id):
try:
client = OpenAI(base_url=host, api_key=provider_key)
data = {"model": selected_model, "messages": messages, **model_config}
response = client.chat.completions.create(extra_body={"optillm_approach": "rto|re2|cot_reflection|self_consistency|plansearch|leap|z3|bon|moa|mcts|mcp|router|privacy|executecode|json", "session_id": session_id}, **data)
ai_text = response.choices[0].message.content if response.choices and response.choices[0].message and response.choices[0].message.content else RESPONSES["RESPONSE_2"]
return process_ai_response(ai_text)
except Exception:
marked_item(provider_key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS)
marked_item(host, LINUX_SERVER_HOSTS_MARKED, LINUX_SERVER_HOSTS_ATTEMPTS)
raise
def chat_with_model(history, user_input, selected_model_display, sess):
global ACTIVE_CANDIDATE
if not get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED) or not get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_MARKED):
return RESPONSES["RESPONSE_3"]
if not hasattr(sess, "session_id"):
sess.session_id = str(uuid.uuid4())
selected_model = get_model_key(selected_model_display)
model_config = MODEL_CONFIG.get(selected_model, DEFAULT_CONFIG)
messages = [{"role": "user", "content": user} for user, _ in history]
messages += [{"role": "assistant", "content": assistant} for _, assistant in history if assistant]
messages.append({"role": "user", "content": user_input})
if ACTIVE_CANDIDATE is not None:
try:
return fetch_response(ACTIVE_CANDIDATE[0], ACTIVE_CANDIDATE[1], selected_model, messages, model_config, sess.session_id)
except Exception:
ACTIVE_CANDIDATE = None
available_keys = get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED)
available_servers = get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_MARKED)
candidates = [(host, key) for host in available_servers for key in available_keys]
random.shuffle(candidates)
with concurrent.futures.ThreadPoolExecutor(max_workers=len(candidates)) as executor:
futures = {executor.submit(fetch_response, host, key, selected_model, messages, model_config, sess.session_id): (host, key) for (host, key) in candidates}
for future in concurrent.futures.as_completed(futures):
try:
result = future.result()
ACTIVE_CANDIDATE = futures[future]
for f in futures:
if f is not future:
f.cancel()
return result
except Exception:
continue
return RESPONSES["RESPONSE_2"]
def respond(multi_input, history, selected_model_display, sess):
message = {"text": multi_input.get("text", "").strip(), "files": multi_input.get("files", [])}
if not message["text"] and not message["files"]:
yield history, gr.MultimodalTextbox(value=None, interactive=True), sess
return
combined_input = ""
for file_item in message["files"]:
file_path = file_item["name"] if isinstance(file_item, dict) and "name" in file_item else file_item
file_content = extract_file_content(file_path)
combined_input += f"{Path(file_path).name}\n\n{file_content}\n\n"
if message["text"]:
combined_input += message["text"]
history.append([combined_input, ""])
ai_response = chat_with_model(history, combined_input, selected_model_display, sess)
history[-1][1] = ""
def convert_to_string(data):
if isinstance(data, (str, int, float)):
return str(data)
elif isinstance(data, bytes):
return data.decode("utf-8", errors="ignore")
elif isinstance(data, (list, tuple)):
return "".join(map(convert_to_string, data))
elif isinstance(data, dict):
return json.dumps(data, ensure_ascii=False)
else:
return repr(data)
for character in ai_response:
history[-1][1] += convert_to_string(character)
time.sleep(0.0001)
yield history, gr.MultimodalTextbox(value=None, interactive=True), sess
def change_model(new_model_display):
return [], create_session(), new_model_display
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis:
user_history = gr.State([])
user_session = gr.State(create_session())
selected_model = gr.State(MODEL_CHOICES[0])
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"])
model_dropdown = gr.Dropdown(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
with gr.Row():
msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS)
model_dropdown.change(fn=change_model, inputs=[model_dropdown], outputs=[user_history, user_session, selected_model])
msg.submit(fn=respond, inputs=[msg, user_history, selected_model, user_session], outputs=[chatbot, msg, user_session])
jarvis.launch(show_api=False, max_file_size="1mb")
|