Spaces:
Sleeping
Sleeping
Commit
·
e7c7d84
1
Parent(s):
48d4abb
Computing cosine distance to topics
Browse files
app.py
CHANGED
@@ -23,12 +23,29 @@ st.write('The embedding of', '"' + input_sentence + '"', 'at position',x,'is',em
|
|
23 |
uploaded_file1 = st.file_uploader("Choose a file: sentence list")
|
24 |
if uploaded_file1 is not None:
|
25 |
#read csv
|
26 |
-
df1=pd.read_csv(uploaded_file1)
|
27 |
st.write(df1)
|
28 |
|
29 |
uploaded_file2 = st.file_uploader("Choose a file: topic list")
|
30 |
if uploaded_file2 is not None:
|
31 |
#read csv
|
32 |
-
df2=pd.read_csv(uploaded_file2)
|
33 |
st.write(df2)
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
uploaded_file1 = st.file_uploader("Choose a file: sentence list")
|
24 |
if uploaded_file1 is not None:
|
25 |
#read csv
|
26 |
+
df1=pd.read_csv(uploaded_file1.head())
|
27 |
st.write(df1)
|
28 |
|
29 |
uploaded_file2 = st.file_uploader("Choose a file: topic list")
|
30 |
if uploaded_file2 is not None:
|
31 |
#read csv
|
32 |
+
df2=pd.read_csv(uploaded_file2.head())
|
33 |
st.write(df2)
|
34 |
|
35 |
+
if uploaded_file1 is not None and uploaded_file2 is not None:
|
36 |
+
from sentence_transformers import SentenceTransformer, util
|
37 |
+
import torch
|
38 |
+
|
39 |
+
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
40 |
+
corpus = df1['sentence']
|
41 |
+
topics = df2['topics']
|
42 |
+
|
43 |
+
corpus_embeddings = embedder.encode(corpus, convert_to_tensor=True)
|
44 |
+
for topic in topics:
|
45 |
+
topic_embedding = embedder.encode(topic, convert_to_tensor=True)
|
46 |
+
cos_scores = util.cos_sim(query_embedding, corpus_embeddings)[0]
|
47 |
+
df1[str(topic)] = cos_scores
|
48 |
+
|
49 |
+
st.write(df1)
|
50 |
+
|
51 |
+
|