Spaces:
Sleeping
Sleeping
Commit
·
376e087
1
Parent(s):
094d202
Changing the app: removing the slider and adding a section to find most likely topic of example
Browse files
app.py
CHANGED
@@ -5,10 +5,16 @@ st.markdown('# Semantic search and topic classification (v1)')
|
|
5 |
st.markdown(' - Author: hcontreras')
|
6 |
st.markdown(' - Description: We want to classify sentences into a predefined set of topics. We use semantic search with a pre-trained transformer and we embed the input sentences and find the score relative to each topic')
|
7 |
|
|
|
|
|
|
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
10 |
|
11 |
-
input_sentence = st.text_input('
|
|
|
|
|
|
|
12 |
#st.write('The current movie title is', title)
|
13 |
|
14 |
#Sentences we want to encode. Example:
|
@@ -16,14 +22,17 @@ sentence = ['This framework generates embeddings for each input sentence']
|
|
16 |
|
17 |
|
18 |
#Sentences are encoded by calling model.encode()
|
19 |
-
|
|
|
20 |
|
21 |
-
x = st.slider('Select a value')
|
22 |
#embedding = model.encode(input_sentence)
|
23 |
#st.write(x, 'squared is', x * x, 'embedding', embedding[0][0])
|
24 |
-
st.write('The embedding of', '"' + input_sentence + '"', 'at position',x,'is',embedding[0][int(x)])
|
25 |
|
|
|
26 |
|
|
|
27 |
uploaded_file1 = st.file_uploader("Choose a file: sentence list")
|
28 |
if uploaded_file1 is not None:
|
29 |
#read csv
|
|
|
5 |
st.markdown(' - Author: hcontreras')
|
6 |
st.markdown(' - Description: We want to classify sentences into a predefined set of topics. We use semantic search with a pre-trained transformer and we embed the input sentences and find the score relative to each topic')
|
7 |
|
8 |
+
st.markdown('## A quick test')
|
9 |
+
st.markdown('As a test we can create an embedding for a movie title and explore each component with the slider. Have fun!')
|
10 |
+
|
11 |
from sentence_transformers import SentenceTransformer
|
12 |
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
13 |
|
14 |
+
input_sentence = st.text_input('Sentence', 'This is a test for a news article')
|
15 |
+
input_topic = st.selectbox(
|
16 |
+
'Topic',
|
17 |
+
('Space', 'Transportation', 'Health'))
|
18 |
#st.write('The current movie title is', title)
|
19 |
|
20 |
#Sentences we want to encode. Example:
|
|
|
22 |
|
23 |
|
24 |
#Sentences are encoded by calling model.encode()
|
25 |
+
embedding_sentence = model.encode([input_sentence])
|
26 |
+
embedding_topics = model.encode(['Space','Transportation','Health'])
|
27 |
|
28 |
+
#x = st.slider('Select a value')
|
29 |
#embedding = model.encode(input_sentence)
|
30 |
#st.write(x, 'squared is', x * x, 'embedding', embedding[0][0])
|
31 |
+
#st.write('The embedding of', '"' + input_sentence + '"', 'at position',x,'is',embedding[0][int(x)])
|
32 |
|
33 |
+
st.write('Score for topic', input_topic, ':')
|
34 |
|
35 |
+
st.markdown('## ')
|
36 |
uploaded_file1 = st.file_uploader("Choose a file: sentence list")
|
37 |
if uploaded_file1 is not None:
|
38 |
#read csv
|