hacpdsae2023 commited on
Commit
f0ca479
·
1 Parent(s): e35b83c

render Graph from adjacency matrix

Browse files

use G from cosine similarity to populate network

Files changed (1) hide show
  1. app.py +7 -1
app.py CHANGED
@@ -21,11 +21,17 @@ embeddings = model.encode(sentences, convert_to_tensor=True)
21
  #Compute cosine-similarities
22
  cosine_scores = util.cos_sim(embeddings, embeddings)
23
 
 
 
 
24
  #Output the pairs with their score
25
  for i in range(len(sentences)):
26
  for j in range(i):
27
  st.write("{} \t\t {} \t\t Score: {:.4f}".format(sentences[i], sentences[j], cosine_scores[i][j]))
 
 
28
 
 
29
  G = nx.from_numpy_array(cosine_scores.numpy())
30
 
31
 
@@ -56,7 +62,7 @@ from streamlit_agraph import agraph, Node, Edge, Config
56
  # First create a graph using the Barabasi-Albert model
57
  n = 2000
58
  m = 2
59
- G = nx.generators.barabasi_albert_graph(n, m, seed=2023)
60
 
61
  # Then find the node with the largest degree;
62
  # This node's egonet will be the focus of this example.
 
21
  #Compute cosine-similarities
22
  cosine_scores = util.cos_sim(embeddings, embeddings)
23
 
24
+ # creating adjacency matrix
25
+ A = np.zeroes((len(sentences),len(sentences)))
26
+
27
  #Output the pairs with their score
28
  for i in range(len(sentences)):
29
  for j in range(i):
30
  st.write("{} \t\t {} \t\t Score: {:.4f}".format(sentences[i], sentences[j], cosine_scores[i][j]))
31
+ M[i][j] = cosine_scores[i][j]
32
+ M[j][i] = cosine_scores[i][j]
33
 
34
+ #G = nx.from_numpy_array(A)
35
  G = nx.from_numpy_array(cosine_scores.numpy())
36
 
37
 
 
62
  # First create a graph using the Barabasi-Albert model
63
  n = 2000
64
  m = 2
65
+ #G = nx.generators.barabasi_albert_graph(n, m, seed=2023)
66
 
67
  # Then find the node with the largest degree;
68
  # This node's egonet will be the focus of this example.