Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
from model.utils import preprocess_input, save_feedback
|
6 |
+
from model.auto_learn import trigger_auto_learning
|
7 |
+
|
8 |
+
# Carregar modelo e tokenizador
|
9 |
+
model_name = "gpt2"
|
10 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
11 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
12 |
+
|
13 |
+
# Mover para GPU se disponível
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
model.to(device)
|
16 |
+
|
17 |
+
# Função principal de inferência
|
18 |
+
def generate_text(prompt, max_length=100, temperature=0.7):
|
19 |
+
inputs = preprocess_input(prompt, tokenizer)
|
20 |
+
input_ids = inputs["input_ids"].to(device)
|
21 |
+
|
22 |
+
outputs = model.generate(
|
23 |
+
input_ids,
|
24 |
+
max_length=max_length,
|
25 |
+
temperature=temperature,
|
26 |
+
num_return_sequences=1,
|
27 |
+
do_sample=True,
|
28 |
+
pad_token_id=tokenizer.eos_token_id
|
29 |
+
)
|
30 |
+
|
31 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
32 |
+
return generated_text
|
33 |
+
|
34 |
+
# Função para coletar feedback e disparar autoaprendizado
|
35 |
+
def submit_feedback(prompt, generated_text, user_feedback):
|
36 |
+
save_feedback(prompt, generated_text, user_feedback)
|
37 |
+
trigger_auto_learning() # Dispara fine-tuning se necessário
|
38 |
+
return "Feedback salvo com sucesso!"
|
39 |
+
|
40 |
+
# Interface com Gradio
|
41 |
+
def create_interface():
|
42 |
+
with gr.Blocks() as demo:
|
43 |
+
gr.Markdown("# GPT-2 no Hugging Face")
|
44 |
+
with gr.Row():
|
45 |
+
with gr.Column():
|
46 |
+
prompt = gr.Textbox(label="Digite seu prompt")
|
47 |
+
max_length = gr.Slider(50, 500, value=100, label="Comprimento máximo")
|
48 |
+
temperature = gr.Slider(0.1, 1.0, value=0.7, label="Temperatura")
|
49 |
+
generate_btn = gr.Button("Gerar Texto")
|
50 |
+
with gr.Column():
|
51 |
+
output = gr.Textbox(label="Texto Gerado")
|
52 |
+
feedback = gr.Textbox(label="Feedback (opcional)")
|
53 |
+
feedback_btn = gr.Button("Enviar Feedback")
|
54 |
+
|
55 |
+
generate_btn.click(
|
56 |
+
fn=generate_text,
|
57 |
+
inputs=[prompt, max_length, temperature],
|
58 |
+
outputs=output
|
59 |
+
)
|
60 |
+
feedback_btn.click(
|
61 |
+
fn=submit_feedback,
|
62 |
+
inputs=[prompt, output, feedback],
|
63 |
+
outputs=gr.Textbox()
|
64 |
+
)
|
65 |
+
|
66 |
+
return demo
|
67 |
+
|
68 |
+
# Iniciar a interface
|
69 |
+
if __name__ == "__main__":
|
70 |
+
demo = create_interface()
|
71 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|