import torch import gradio as gr import threading import logging import sys from urllib.parse import urlparse from transformers import ( AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling ) from datasets import load_dataset # Configure logging logging.basicConfig(stream=sys.stdout, level=logging.INFO) def parse_hf_dataset_url(url: str) -> tuple[str, str | None]: """Parse Hugging Face dataset URL into (dataset_name, config)""" parsed = urlparse(url) path_parts = parsed.path.split('/') try: # Find 'datasets' in path datasets_idx = path_parts.index('datasets') except ValueError: raise ValueError("Invalid Hugging Face dataset URL") dataset_parts = path_parts[datasets_idx+1:] dataset_name = "/".join(dataset_parts[0:2]) # Try to find config (common pattern for datasets with viewer) try: viewer_idx = dataset_parts.index('viewer') config = dataset_parts[viewer_idx+1] if viewer_idx+1 < len(dataset_parts) else None except ValueError: config = None return dataset_name, config def train(dataset_url: str): try: # Parse dataset URL dataset_name, dataset_config = parse_hf_dataset_url(dataset_url) logging.info(f"Loading dataset: {dataset_name} (config: {dataset_config})") # Load model and tokenizer model_name = "microsoft/phi-2" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu", trust_remote_code=True) # Add padding token if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token # Load dataset from Hugging Face Hub dataset = load_dataset( dataset_name, dataset_config, trust_remote_code=True ) # Handle dataset splits if "train" not in dataset: raise ValueError("Dataset must have a 'train' split") train_dataset = dataset["train"] eval_dataset = dataset.get("validation", dataset.get("test", None)) # Split if no validation set if eval_dataset is None: split = train_dataset.train_test_split(test_size=0.1, seed=42) train_dataset = split["train"] eval_dataset = split["test"] # Tokenization function def tokenize_function(examples): return tokenizer( examples["text"], # Adjust column name as needed padding="max_length", truncation=True, max_length=256, return_tensors="pt", ) # Tokenize datasets tokenized_train = train_dataset.map( tokenize_function, batched=True, remove_columns=train_dataset.column_names ) tokenized_eval = eval_dataset.map( tokenize_function, batched=True, remove_columns=eval_dataset.column_names ) # Data collator data_collator = DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm=False ) # Training arguments training_args = TrainingArguments( output_dir="./phi2-results", per_device_train_batch_size=2, per_device_eval_batch_size=2, num_train_epochs=3, logging_dir="./logs", logging_steps=10, fp16=False, ) # Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_train, eval_dataset=tokenized_eval, data_collator=data_collator, ) # Start training logging.info("Training started...") trainer.train() trainer.save_model("./phi2-trained-model") logging.info("Training completed!") return "✅ Training succeeded! Model saved." except Exception as e: logging.error(f"Training failed: {str(e)}") return f"❌ Training failed: {str(e)}" # Gradio interface with gr.Blocks(title="Phi-2 Training") as demo: gr.Markdown("# 🚀 Train Phi-2 with HF Hub Data") with gr.Row(): dataset_url = gr.Textbox( label="Dataset URL", value="https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0" ) start_btn = gr.Button("Start Training", variant="primary") status_output = gr.Textbox(label="Status", interactive=False) start_btn.click( fn=lambda url: threading.Thread(target=train, args=(url,)).start(), inputs=[dataset_url], outputs=status_output ) if __name__ == "__main__": demo.launch( server_name="0.0.0.0", server_port=7860 )