Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TrainingArguments, | |
Trainer, | |
DataCollatorForLanguageModeling | |
) | |
from datasets import load_dataset | |
import logging | |
import sys | |
# Configure logging | |
logging.basicConfig(stream=sys.stdout, level=logging.INFO) | |
def train(): | |
try: | |
# Load model and tokenizer | |
model_name = "microsoft/phi-2" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu", trust_remote_code=True) | |
# Add padding token | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
# Load dataset | |
dataset = load_dataset( | |
"csv", | |
data_files={ | |
"train": "data/train/data.csv", | |
"validation": "data/validation/data.csv" | |
} | |
) | |
# Tokenization function | |
def tokenize_function(examples): | |
return tokenizer( | |
examples["text"], | |
padding="max_length", | |
truncation=True, | |
max_length=256, | |
return_tensors="pt", | |
) | |
tokenized_dataset = dataset.map( | |
tokenize_function, | |
batched=True, | |
remove_columns=["text"] | |
) | |
# Data collator | |
data_collator = DataCollatorForLanguageModeling( | |
tokenizer=tokenizer, | |
mlm=False | |
) | |
# Training arguments | |
training_args = TrainingArguments( | |
output_dir="./phi2-results", | |
per_device_train_batch_size=2, | |
per_device_eval_batch_size=2, | |
num_train_epochs=3, | |
logging_dir="./logs", | |
logging_steps=10, | |
fp16=False, | |
) | |
# Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_dataset["train"], | |
eval_dataset=tokenized_dataset["validation"], | |
data_collator=data_collator, | |
) | |
# Start training | |
logging.info("Training started...") | |
trainer.train() | |
trainer.save_model("./phi2-trained-model") | |
logging.info("Training completed!") | |
return "β Training succeeded! Model saved." | |
except Exception as e: | |
logging.error(f"Training failed: {str(e)}") | |
return f"β Training failed: {str(e)}" | |
# Gradio UI | |
with gr.Blocks(title="Phi-2 Training") as demo: | |
gr.Markdown("# π Train Phi-2 on CPU") | |
with gr.Row(): | |
start_btn = gr.Button("Start Training", variant="primary") | |
status_output = gr.Textbox(label="Status", interactive=False) | |
start_btn.click( | |
fn=train, | |
outputs=status_output | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) |