Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TrainingArguments, | |
Trainer, | |
DataCollatorForLanguageModeling | |
) | |
from datasets import load_dataset | |
import logging | |
import sys | |
# Configure logging | |
logging.basicConfig(stream=sys.stdout, level=logging.INFO) | |
def train(dataset_name: str, dataset_config: str = None): | |
try: | |
# Load model and tokenizer | |
model_name = "microsoft/phi-2" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu", trust_remote_code=True) | |
# Add padding token | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
# Load dataset from Hugging Face Hub | |
logging.info(f"Loading dataset: {eswardivi/medical_qa} (config: {dataset_config})") | |
dataset = load_dataset( | |
dataset_name, | |
dataset_config, # Optional config (e.g., language for Common Voice) | |
split="train+validation", # Combine splits | |
trust_remote_code=True # Required for some datasets | |
) | |
# Split into train/validation | |
dataset = dataset.train_test_split(test_size=0.1, seed=42) | |
# Tokenization function (adjust based on dataset columns) | |
def tokenize_function(examples): | |
return tokenizer( | |
examples["text"], # Replace "text" with your dataset's text column | |
padding="max_length", | |
truncation=True, | |
max_length=256, | |
return_tensors="pt", | |
) | |
tokenized_dataset = dataset.map( | |
tokenize_function, | |
batched=True, | |
remove_columns=dataset["train"].column_names | |
) | |
# Data collator | |
data_collator = DataCollatorForLanguageModeling( | |
tokenizer=tokenizer, | |
mlm=False | |
) | |
# Training arguments | |
training_args = TrainingArguments( | |
output_dir="./phi2-results", | |
per_device_train_batch_size=2, | |
per_device_eval_batch_size=2, | |
num_train_epochs=3, | |
logging_dir="./logs", | |
logging_steps=10, | |
fp16=False, | |
) | |
# Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_dataset["train"], | |
eval_dataset=tokenized_dataset["test"], | |
data_collator=data_collator, | |
) | |
# Start training | |
logging.info("Training started...") | |
trainer.train() | |
trainer.save_model("./phi2-trained-model") | |
logging.info("Training completed!") | |
return "β Training succeeded! Model saved." | |
except Exception as e: | |
logging.error(f"Training failed: {str(e)}") | |
return f"β Training failed: {str(e)}" | |
# Gradio UI with dataset input | |
with gr.Blocks(title="Phi-2 Training") as demo: | |
gr.Markdown("# π Train Phi-2 with HF Hub Data") | |
with gr.Row(): | |
dataset_name = gr.Textbox(label="Dataset Name", value="mozilla-foundation/common_voice_11_0") | |
dataset_config = gr.Textbox(label="Dataset Config (optional)", value="en") | |
start_btn = gr.Button("Start Training", variant="primary") | |
status_output = gr.Textbox(label="Status", interactive=False) | |
start_btn.click( | |
fn=train, | |
inputs=[dataset_name, dataset_config], | |
outputs=status_output | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) |