R1 / app.py
hackergeek98's picture
Update app.py
6c8c083 verified
raw
history blame
3.63 kB
import torch
import gradio as gr
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling
)
from datasets import load_dataset
import logging
import sys
# Configure logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
def train(dataset_name: str, dataset_config: str = None):
try:
# Load model and tokenizer
model_name = "microsoft/phi-2"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu", trust_remote_code=True)
# Add padding token
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load dataset from Hugging Face Hub
logging.info(f"Loading dataset: {eswardivi/medical_qa} (config: {dataset_config})")
dataset = load_dataset(
dataset_name,
dataset_config, # Optional config (e.g., language for Common Voice)
split="train+validation", # Combine splits
trust_remote_code=True # Required for some datasets
)
# Split into train/validation
dataset = dataset.train_test_split(test_size=0.1, seed=42)
# Tokenization function (adjust based on dataset columns)
def tokenize_function(examples):
return tokenizer(
examples["text"], # Replace "text" with your dataset's text column
padding="max_length",
truncation=True,
max_length=256,
return_tensors="pt",
)
tokenized_dataset = dataset.map(
tokenize_function,
batched=True,
remove_columns=dataset["train"].column_names
)
# Data collator
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
# Training arguments
training_args = TrainingArguments(
output_dir="./phi2-results",
per_device_train_batch_size=2,
per_device_eval_batch_size=2,
num_train_epochs=3,
logging_dir="./logs",
logging_steps=10,
fp16=False,
)
# Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["test"],
data_collator=data_collator,
)
# Start training
logging.info("Training started...")
trainer.train()
trainer.save_model("./phi2-trained-model")
logging.info("Training completed!")
return "βœ… Training succeeded! Model saved."
except Exception as e:
logging.error(f"Training failed: {str(e)}")
return f"❌ Training failed: {str(e)}"
# Gradio UI with dataset input
with gr.Blocks(title="Phi-2 Training") as demo:
gr.Markdown("# πŸš€ Train Phi-2 with HF Hub Data")
with gr.Row():
dataset_name = gr.Textbox(label="Dataset Name", value="mozilla-foundation/common_voice_11_0")
dataset_config = gr.Textbox(label="Dataset Config (optional)", value="en")
start_btn = gr.Button("Start Training", variant="primary")
status_output = gr.Textbox(label="Status", interactive=False)
start_btn.click(
fn=train,
inputs=[dataset_name, dataset_config],
outputs=status_output
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)