hackerbyhobby
commited on
more updates
Browse files
app.py
CHANGED
@@ -26,6 +26,11 @@ model_name = "joeddav/xlm-roberta-large-xnli"
|
|
26 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
27 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
28 |
|
|
|
|
|
|
|
|
|
|
|
29 |
# SHAP explainer setup
|
30 |
explainer = shap.Explainer(classifier)
|
31 |
|
@@ -224,8 +229,8 @@ This tool classifies messages as SMiShing, Other Scam, or Legitimate using a zer
|
|
224 |
(joeddav/xlm-roberta-large-xnli). It automatically detects if the text is Spanish or English.
|
225 |
It uses SHAP for explainability and checks URLs against Google's Safe Browsing API for enhanced analysis.
|
226 |
""",
|
227 |
-
flagging_mode="
|
228 |
)
|
229 |
|
230 |
if __name__ == "__main__":
|
231 |
-
demo.launch()
|
|
|
26 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
27 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
28 |
|
29 |
+
# Patch shap to use np.bool_ instead of np.bool
|
30 |
+
shap.maskers._text.Text.mask_invariants = (
|
31 |
+
lambda self, *args: np.zeros(len(self._tokenized_s), dtype=np.bool_)
|
32 |
+
)
|
33 |
+
|
34 |
# SHAP explainer setup
|
35 |
explainer = shap.Explainer(classifier)
|
36 |
|
|
|
229 |
(joeddav/xlm-roberta-large-xnli). It automatically detects if the text is Spanish or English.
|
230 |
It uses SHAP for explainability and checks URLs against Google's Safe Browsing API for enhanced analysis.
|
231 |
""",
|
232 |
+
flagging_mode="never"
|
233 |
)
|
234 |
|
235 |
if __name__ == "__main__":
|
236 |
+
demo.launch()
|