hackerbyhobby
commited on
rollback due to error
Browse files
app.py
CHANGED
@@ -5,22 +5,6 @@ from transformers import pipeline
|
|
5 |
import re
|
6 |
from langdetect import detect
|
7 |
from deep_translator import GoogleTranslator
|
8 |
-
import shap
|
9 |
-
import requests
|
10 |
-
import json
|
11 |
-
import os
|
12 |
-
import numpy as np
|
13 |
-
from shap.maskers import Text
|
14 |
-
|
15 |
-
# Patch SHAP to replace np.bool with np.bool_ dynamically
|
16 |
-
if hasattr(shap.maskers._text.Text, "invariants"):
|
17 |
-
original_invariants = shap.maskers._text.Text.invariants
|
18 |
-
|
19 |
-
def patched_invariants(self, *args):
|
20 |
-
# Use np.bool_ instead of the deprecated np.bool
|
21 |
-
return np.zeros(len(self._tokenized_s), dtype=np.bool_)
|
22 |
-
|
23 |
-
shap.maskers._text.Text.invariants = patched_invariants
|
24 |
|
25 |
# Translator instance
|
26 |
translator = GoogleTranslator(source="auto", target="es")
|
@@ -37,58 +21,15 @@ model_name = "joeddav/xlm-roberta-large-xnli"
|
|
37 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
38 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
39 |
|
40 |
-
# 3. SHAP Explainer Setup
|
41 |
-
explainer = shap.Explainer(classifier, masker=Text(tokenizer=classifier.tokenizer))
|
42 |
-
|
43 |
-
# Retrieve the Google Safe Browsing API key from the environment
|
44 |
-
SAFE_BROWSING_API_KEY = os.getenv("SAFE_BROWSING_API_KEY")
|
45 |
-
|
46 |
-
if not SAFE_BROWSING_API_KEY:
|
47 |
-
raise ValueError("Google Safe Browsing API key not found. Please set it as an environment variable in your Hugging Face Space.")
|
48 |
-
|
49 |
-
SAFE_BROWSING_URL = "https://safebrowsing.googleapis.com/v4/threatMatches:find"
|
50 |
-
|
51 |
-
def check_url_with_google_safebrowsing(url):
|
52 |
-
"""
|
53 |
-
Check a URL against Google's Safe Browsing API.
|
54 |
-
"""
|
55 |
-
payload = {
|
56 |
-
"client": {
|
57 |
-
"clientId": "your-client-id",
|
58 |
-
"clientVersion": "1.0"
|
59 |
-
},
|
60 |
-
"threatInfo": {
|
61 |
-
"threatTypes": ["MALWARE", "SOCIAL_ENGINEERING", "UNWANTED_SOFTWARE", "POTENTIALLY_HARMFUL_APPLICATION"],
|
62 |
-
"platformTypes": ["ANY_PLATFORM"],
|
63 |
-
"threatEntryTypes": ["URL"],
|
64 |
-
"threatEntries": [
|
65 |
-
{"url": url}
|
66 |
-
]
|
67 |
-
}
|
68 |
-
}
|
69 |
-
try:
|
70 |
-
response = requests.post(
|
71 |
-
SAFE_BROWSING_URL,
|
72 |
-
params={"key": SAFE_BROWSING_API_KEY},
|
73 |
-
json=payload
|
74 |
-
)
|
75 |
-
response_data = response.json()
|
76 |
-
if "matches" in response_data:
|
77 |
-
return True # URL is flagged as malicious
|
78 |
-
return False # URL is safe
|
79 |
-
except Exception as e:
|
80 |
-
print(f"Error checking URL with Safe Browsing API: {e}")
|
81 |
-
return False
|
82 |
-
|
83 |
def get_keywords_by_language(text: str):
|
84 |
"""
|
85 |
Detect language using `langdetect` and translate keywords if needed.
|
86 |
"""
|
87 |
-
snippet = text[:200]
|
88 |
try:
|
89 |
detected_lang = detect(snippet)
|
90 |
except Exception:
|
91 |
-
detected_lang = "en"
|
92 |
|
93 |
if detected_lang == "es":
|
94 |
smishing_in_spanish = [
|
@@ -126,10 +67,12 @@ def boost_probabilities(probabilities: dict, text: str):
|
|
126 |
p_other_scam += other_scam_boost
|
127 |
p_legit -= (smishing_boost + other_scam_boost)
|
128 |
|
|
|
129 |
p_smishing = max(p_smishing, 0.0)
|
130 |
p_other_scam = max(p_other_scam, 0.0)
|
131 |
p_legit = max(p_legit, 0.0)
|
132 |
|
|
|
133 |
total = p_smishing + p_other_scam + p_legit
|
134 |
if total > 0:
|
135 |
p_smishing /= total
|
@@ -142,104 +85,19 @@ def boost_probabilities(probabilities: dict, text: str):
|
|
142 |
"SMiShing": p_smishing,
|
143 |
"Other Scam": p_other_scam,
|
144 |
"Legitimate": p_legit,
|
145 |
-
"detected_lang": detected_lang
|
146 |
}
|
147 |
|
148 |
-
def
|
149 |
-
"""
|
150 |
-
Generate SHAP explanations for the classification.
|
151 |
"""
|
152 |
-
|
153 |
-
raise ValueError("Cannot generate SHAP explanations for empty text.")
|
154 |
-
|
155 |
-
shap_values = explainer([text])
|
156 |
-
shap.force_plot(
|
157 |
-
explainer.expected_value[0], shap_values[0].values[0], shap_values[0].data
|
158 |
-
)
|
159 |
-
|
160 |
-
def generate_user_friendly_message(
|
161 |
-
final_label: str,
|
162 |
-
confidence: float,
|
163 |
-
found_smishing: list,
|
164 |
-
found_other_scam: list,
|
165 |
-
found_urls: list,
|
166 |
-
threat_analysis: dict
|
167 |
-
) -> str:
|
168 |
"""
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
"We found indications typical of phishing via SMS, such as "
|
176 |
-
)
|
177 |
-
reasons = []
|
178 |
-
if found_smishing:
|
179 |
-
reasons.append(f"the use of suspicious keywords: {', '.join(found_smishing)}")
|
180 |
-
if found_urls:
|
181 |
-
flagged_urls = [u for u in found_urls if threat_analysis.get(u)]
|
182 |
-
safe_urls = [u for u in found_urls if not threat_analysis.get(u)]
|
183 |
-
if flagged_urls:
|
184 |
-
reasons.append(f"at least one URL flagged as unsafe: {', '.join(flagged_urls)}")
|
185 |
-
if safe_urls:
|
186 |
-
reasons.append(f"other URLs may be suspicious: {', '.join(safe_urls)}")
|
187 |
-
|
188 |
-
if not reasons:
|
189 |
-
reasons.append("certain context or structure commonly used in SMiShing")
|
190 |
-
|
191 |
-
msg += " and ".join(reasons) + "."
|
192 |
-
return msg
|
193 |
-
|
194 |
-
elif final_label == "Other Scam":
|
195 |
-
msg = (
|
196 |
-
f"This message is classified as 'Other Scam' (confidence {confidence}). "
|
197 |
-
"It contains elements typically associated with scams. "
|
198 |
-
)
|
199 |
-
reasons = []
|
200 |
-
if found_other_scam:
|
201 |
-
reasons.append(f"keywords often linked to fraudulent activity: {', '.join(found_other_scam)}")
|
202 |
-
if found_urls:
|
203 |
-
flagged_urls = [u for u in found_urls if threat_analysis.get(u)]
|
204 |
-
safe_urls = [u for u in found_urls if not threat_analysis.get(u)]
|
205 |
-
if flagged_urls:
|
206 |
-
reasons.append(f"URLs flagged as unsafe: {', '.join(flagged_urls)}")
|
207 |
-
if safe_urls:
|
208 |
-
reasons.append(f"additional suspicious URLs: {', '.join(safe_urls)}")
|
209 |
-
|
210 |
-
if not reasons:
|
211 |
-
reasons.append("general content or structure known to be used in scams")
|
212 |
-
|
213 |
-
msg += " and ".join(reasons) + "."
|
214 |
-
return msg
|
215 |
-
|
216 |
-
else: # Legitimate
|
217 |
-
msg = (
|
218 |
-
f"This message is classified as 'Legitimate' (confidence {confidence}). "
|
219 |
-
"We did not detect typical phishing or scam indicators. "
|
220 |
-
)
|
221 |
-
if found_urls:
|
222 |
-
# If there are URLs, mention if they're considered safe
|
223 |
-
flagged_urls = [u for u in found_urls if threat_analysis.get(u)]
|
224 |
-
if flagged_urls:
|
225 |
-
msg += f"However, note that at least one URL appears unsafe: {', '.join(flagged_urls)}."
|
226 |
-
else:
|
227 |
-
msg += "Although it contains URLs, none appear to be malicious."
|
228 |
-
else:
|
229 |
-
msg += "No suspicious keywords or URLs were detected."
|
230 |
-
|
231 |
-
return msg
|
232 |
-
|
233 |
-
|
234 |
-
def smishing_detector(text, image):
|
235 |
-
"""
|
236 |
-
Main detection function combining text and OCR.
|
237 |
-
"""
|
238 |
-
combined_text = text or ""
|
239 |
-
if image is not None:
|
240 |
-
ocr_text = pytesseract.image_to_string(image, lang="spa+eng")
|
241 |
-
combined_text += " " + ocr_text
|
242 |
-
combined_text = combined_text.strip()
|
243 |
|
244 |
if not combined_text:
|
245 |
return {
|
@@ -247,9 +105,7 @@ def smishing_detector(text, image):
|
|
247 |
"label": "No text provided",
|
248 |
"confidence": 0.0,
|
249 |
"keywords_found": [],
|
250 |
-
"urls_found": []
|
251 |
-
"threat_analysis": "No URLs to analyze",
|
252 |
-
"user_friendly_message": "No classification could be made since no text was provided.",
|
253 |
}
|
254 |
|
255 |
result = classifier(
|
@@ -258,12 +114,18 @@ def smishing_detector(text, image):
|
|
258 |
hypothesis_template="This message is {}."
|
259 |
)
|
260 |
original_probs = {k: float(v) for k, v in zip(result["labels"], result["scores"])}
|
|
|
261 |
boosted = boost_probabilities(original_probs, combined_text)
|
262 |
|
263 |
-
#
|
264 |
-
|
|
|
|
|
|
|
|
|
265 |
for k, v in boosted.items():
|
266 |
boosted[k] = float(v)
|
|
|
267 |
|
268 |
final_label = max(boosted, key=boosted.get)
|
269 |
final_confidence = round(boosted[final_label], 3)
|
@@ -275,24 +137,6 @@ def smishing_detector(text, image):
|
|
275 |
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
|
276 |
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
|
277 |
|
278 |
-
# Analyze URLs using Google's Safe Browsing API
|
279 |
-
threat_analysis = {
|
280 |
-
url: check_url_with_google_safebrowsing(url) for url in found_urls
|
281 |
-
}
|
282 |
-
|
283 |
-
# Generate SHAP Explanation (optional for user insights)
|
284 |
-
explain_classification(combined_text)
|
285 |
-
|
286 |
-
# Build user-friendly message
|
287 |
-
user_friendly_msg = generate_user_friendly_message(
|
288 |
-
final_label,
|
289 |
-
final_confidence,
|
290 |
-
found_smishing,
|
291 |
-
found_other_scam,
|
292 |
-
found_urls,
|
293 |
-
threat_analysis
|
294 |
-
)
|
295 |
-
|
296 |
return {
|
297 |
"detected_language": detected_lang,
|
298 |
"text_used_for_classification": combined_text,
|
@@ -303,33 +147,64 @@ def smishing_detector(text, image):
|
|
303 |
"smishing_keywords_found": found_smishing,
|
304 |
"other_scam_keywords_found": found_other_scam,
|
305 |
"urls_found": found_urls,
|
306 |
-
"threat_analysis": threat_analysis,
|
307 |
-
# The new user-friendly explanation
|
308 |
-
"user_friendly_message": user_friendly_msg,
|
309 |
}
|
310 |
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
)
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
if __name__ == "__main__":
|
335 |
demo.launch()
|
|
|
5 |
import re
|
6 |
from langdetect import detect
|
7 |
from deep_translator import GoogleTranslator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Translator instance
|
10 |
translator = GoogleTranslator(source="auto", target="es")
|
|
|
21 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
22 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def get_keywords_by_language(text: str):
|
25 |
"""
|
26 |
Detect language using `langdetect` and translate keywords if needed.
|
27 |
"""
|
28 |
+
snippet = text[:200]
|
29 |
try:
|
30 |
detected_lang = detect(snippet)
|
31 |
except Exception:
|
32 |
+
detected_lang = "en"
|
33 |
|
34 |
if detected_lang == "es":
|
35 |
smishing_in_spanish = [
|
|
|
67 |
p_other_scam += other_scam_boost
|
68 |
p_legit -= (smishing_boost + other_scam_boost)
|
69 |
|
70 |
+
# Clamp
|
71 |
p_smishing = max(p_smishing, 0.0)
|
72 |
p_other_scam = max(p_other_scam, 0.0)
|
73 |
p_legit = max(p_legit, 0.0)
|
74 |
|
75 |
+
# Re-normalize
|
76 |
total = p_smishing + p_other_scam + p_legit
|
77 |
if total > 0:
|
78 |
p_smishing /= total
|
|
|
85 |
"SMiShing": p_smishing,
|
86 |
"Other Scam": p_other_scam,
|
87 |
"Legitimate": p_legit,
|
88 |
+
"detected_lang": detected_lang
|
89 |
}
|
90 |
|
91 |
+
def smishing_detector(input_type, text, image):
|
|
|
|
|
92 |
"""
|
93 |
+
Main detection function combining text (if 'Text') and OCR (if 'Screenshot').
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
"""
|
95 |
+
if input_type == "Text":
|
96 |
+
combined_text = text.strip() if text else ""
|
97 |
+
else:
|
98 |
+
combined_text = ""
|
99 |
+
if image is not None:
|
100 |
+
combined_text = pytesseract.image_to_string(image, lang="spa+eng").strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
if not combined_text:
|
103 |
return {
|
|
|
105 |
"label": "No text provided",
|
106 |
"confidence": 0.0,
|
107 |
"keywords_found": [],
|
108 |
+
"urls_found": []
|
|
|
|
|
109 |
}
|
110 |
|
111 |
result = classifier(
|
|
|
114 |
hypothesis_template="This message is {}."
|
115 |
)
|
116 |
original_probs = {k: float(v) for k, v in zip(result["labels"], result["scores"])}
|
117 |
+
|
118 |
boosted = boost_probabilities(original_probs, combined_text)
|
119 |
|
120 |
+
# Patched snippet begins
|
121 |
+
# 1. Extract language first, preserving it
|
122 |
+
detected_lang = boosted.get("detected_lang", "en")
|
123 |
+
# 2. Remove it so only numeric keys remain
|
124 |
+
boosted.pop("detected_lang", None)
|
125 |
+
# 3. Convert numeric values to float
|
126 |
for k, v in boosted.items():
|
127 |
boosted[k] = float(v)
|
128 |
+
# Patched snippet ends
|
129 |
|
130 |
final_label = max(boosted, key=boosted.get)
|
131 |
final_confidence = round(boosted[final_label], 3)
|
|
|
137 |
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
|
138 |
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
return {
|
141 |
"detected_language": detected_lang,
|
142 |
"text_used_for_classification": combined_text,
|
|
|
147 |
"smishing_keywords_found": found_smishing,
|
148 |
"other_scam_keywords_found": found_other_scam,
|
149 |
"urls_found": found_urls,
|
|
|
|
|
|
|
150 |
}
|
151 |
|
152 |
+
#
|
153 |
+
# Gradio interface with dynamic visibility
|
154 |
+
#
|
155 |
+
def toggle_inputs(choice):
|
156 |
+
"""
|
157 |
+
Return updates for (text_input, image_input) based on the radio selection.
|
158 |
+
"""
|
159 |
+
if choice == "Text":
|
160 |
+
# Show text input, hide image
|
161 |
+
return gr.update(visible=True), gr.update(visible=False)
|
162 |
+
else:
|
163 |
+
# choice == "Screenshot"
|
164 |
+
# Hide text input, show image
|
165 |
+
return gr.update(visible=False), gr.update(visible=True)
|
166 |
+
|
167 |
+
with gr.Blocks() as demo:
|
168 |
+
gr.Markdown("## SMiShing & Scam Detector (Choose Text or Screenshot)")
|
169 |
+
|
170 |
+
with gr.Row():
|
171 |
+
input_type = gr.Radio(
|
172 |
+
choices=["Text", "Screenshot"],
|
173 |
+
value="Text",
|
174 |
+
label="Choose Input Type"
|
175 |
)
|
176 |
+
|
177 |
+
text_input = gr.Textbox(
|
178 |
+
lines=3,
|
179 |
+
label="Paste Suspicious SMS Text",
|
180 |
+
placeholder="Type or paste the message here...",
|
181 |
+
visible=True # default
|
182 |
+
)
|
183 |
+
|
184 |
+
image_input = gr.Image(
|
185 |
+
type="pil",
|
186 |
+
label="Upload Screenshot",
|
187 |
+
visible=False # hidden by default
|
188 |
+
)
|
189 |
+
|
190 |
+
# Whenever input_type changes, toggle which input is visible
|
191 |
+
input_type.change(
|
192 |
+
fn=toggle_inputs,
|
193 |
+
inputs=input_type,
|
194 |
+
outputs=[text_input, image_input],
|
195 |
+
queue=False
|
196 |
+
)
|
197 |
+
|
198 |
+
# Button to run classification
|
199 |
+
analyze_btn = gr.Button("Classify")
|
200 |
+
output_json = gr.JSON(label="Result")
|
201 |
+
|
202 |
+
# On button click, call the smishing_detector
|
203 |
+
analyze_btn.click(
|
204 |
+
fn=smishing_detector,
|
205 |
+
inputs=[input_type, text_input, image_input],
|
206 |
+
outputs=output_json
|
207 |
+
)
|
208 |
|
209 |
if __name__ == "__main__":
|
210 |
demo.launch()
|