|
import gradio as gr |
|
import pytesseract |
|
from PIL import Image |
|
from transformers import pipeline |
|
import re |
|
|
|
|
|
with open("smishing_keywords.txt", "r", encoding="utf-8") as f: |
|
SMISHING_KEYWORDS = [line.strip().lower() for line in f if line.strip()] |
|
|
|
with open("other_scam_keywords.txt", "r", encoding="utf-8") as f: |
|
OTHER_SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()] |
|
|
|
|
|
model_name = "joeddav/xlm-roberta-large-xnli" |
|
classifier = pipeline("zero-shot-classification", model=model_name) |
|
|
|
|
|
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"] |
|
|
|
def boost_probabilities(probabilities: dict, text: str) -> dict: |
|
""" |
|
Increases SMiShing probability if 'smishing_keywords' or URLs are found. |
|
Increases Other Scam probability if 'other_scam_keywords' are found. |
|
Reduces Legitimate by the total amount of these boosts. |
|
Then clamps negative probabilities to 0 and re-normalizes. |
|
""" |
|
lower_text = text.lower() |
|
|
|
|
|
smishing_keyword_count = sum(1 for kw in SMISHING_KEYWORDS if kw in lower_text) |
|
|
|
other_scam_keyword_count = sum(1 for kw in OTHER_SCAM_KEYWORDS if kw in lower_text) |
|
|
|
|
|
smishing_boost = 0.10 * smishing_keyword_count |
|
other_scam_boost = 0.10 * other_scam_keyword_count |
|
|
|
|
|
found_urls = re.findall(r"(https?://[^\s]+)", lower_text) |
|
if found_urls: |
|
smishing_boost += 0.20 |
|
|
|
|
|
p_smishing = probabilities["SMiShing"] |
|
p_other_scam = probabilities["Other Scam"] |
|
p_legit = probabilities["Legitimate"] |
|
|
|
|
|
p_smishing += smishing_boost |
|
p_other_scam += other_scam_boost |
|
|
|
|
|
total_boost = smishing_boost + other_scam_boost |
|
p_legit -= total_boost |
|
|
|
|
|
if p_smishing < 0: |
|
p_smishing = 0.0 |
|
if p_other_scam < 0: |
|
p_other_scam = 0.0 |
|
if p_legit < 0: |
|
p_legit = 0.0 |
|
|
|
|
|
total = p_smishing + p_other_scam + p_legit |
|
if total > 0: |
|
p_smishing /= total |
|
p_other_scam /= total |
|
p_legit /= total |
|
else: |
|
|
|
p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0 |
|
|
|
return { |
|
"SMiShing": p_smishing, |
|
"Other Scam": p_other_scam, |
|
"Legitimate": p_legit |
|
} |
|
|
|
def smishing_detector(text, image): |
|
""" |
|
1. OCR if image provided. |
|
2. Zero-shot classify => base probabilities. |
|
3. Boost probabilities based on keywords + URL logic. |
|
4. Return final classification + confidence. |
|
""" |
|
combined_text = text or "" |
|
if image is not None: |
|
ocr_text = pytesseract.image_to_string(image, lang="spa+eng") |
|
combined_text += " " + ocr_text |
|
combined_text = combined_text.strip() |
|
|
|
if not combined_text: |
|
return { |
|
"text_used_for_classification": "(none)", |
|
"label": "No text provided", |
|
"confidence": 0.0, |
|
"smishing_keywords_found": [], |
|
"other_scam_keywords_found": [], |
|
"urls_found": [] |
|
} |
|
|
|
|
|
result = classifier( |
|
sequences=combined_text, |
|
candidate_labels=CANDIDATE_LABELS, |
|
hypothesis_template="This message is {}." |
|
) |
|
original_probs = dict(zip(result["labels"], result["scores"])) |
|
|
|
|
|
boosted_probs = boost_probabilities(original_probs, combined_text) |
|
final_label = max(boosted_probs, key=boosted_probs.get) |
|
final_confidence = round(boosted_probs[final_label], 3) |
|
|
|
|
|
lower_text = combined_text.lower() |
|
smishing_found = [kw for kw in SMISHING_KEYWORDS if kw in lower_text] |
|
other_scam_found = [kw for kw in OTHER_SCAM_KEYWORDS if kw in lower_text] |
|
found_urls = re.findall(r"(https?://[^\s]+)", lower_text) |
|
|
|
return { |
|
"text_used_for_classification": combined_text, |
|
"original_probabilities": { |
|
k: round(v, 3) for k, v in original_probs.items() |
|
}, |
|
"boosted_probabilities": { |
|
k: round(v, 3) for k, v in boosted_probs.items() |
|
}, |
|
"label": final_label, |
|
"confidence": final_confidence, |
|
"smishing_keywords_found": smishing_found, |
|
"other_scam_keywords_found": other_scam_found, |
|
"urls_found": found_urls, |
|
} |
|
|
|
demo = gr.Interface( |
|
fn=smishing_detector, |
|
inputs=[ |
|
gr.Textbox( |
|
lines=3, |
|
label="Paste Suspicious SMS Text (English/Spanish)", |
|
placeholder="Type or paste the message here..." |
|
), |
|
gr.Image( |
|
type="pil", |
|
label="Or Upload a Screenshot (Optional)" |
|
) |
|
], |
|
outputs="json", |
|
title="SMiShing & Scam Detector (Separate Keywords + URL β SMiShing)", |
|
description=""" |
|
This tool classifies messages as SMiShing, Other Scam, or Legitimate using a zero-shot model |
|
(joeddav/xlm-roberta-large-xnli). |
|
- 'smishing_keywords.txt' boosts SMiShing specifically. |
|
- 'other_scam_keywords.txt' boosts Other Scam specifically. |
|
- Any URL found further boosts ONLY Smishing. |
|
- The total boost is subtracted from Legitimate. |
|
Supports English & Spanish text (OCR included). |
|
""", |
|
allow_flagging="never" |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |