from sentence_transformers import SentenceTransformer, SimilarityFunction import streamlit as st st. x = st.slider('Select a value') st.write(x, 'squared is', x * x) model = SentenceTransformer(model_name, trust_remote_code=True) embeddings = model.encode(sentences, prompt_name="passage") similarity_fn_enum = getattr(SimilarityFunction, similarity_fn.upper()) model.similarity_fn_name = similarity_fn_enum similarities = model.similarity(embeddings[0], embeddings[1]) print(f"similarity: {similarities}")