from manim import * import numpy as np class FullVideo(Scene): def construct(self): # Part 1: Introduction title = Text("Gradients, Optimization, and Bayesian Updating").scale(0.8).to_edge(UP) intro_text = Text( "Exploring how gradients guide optimization\nand how beliefs evolve with evidence.", font_size=24 ).next_to(title, DOWN) self.play(Write(title), Write(intro_text)) self.wait(2) self.play(FadeOut(intro_text)) # Transition to gradients self.play(FadeOut(title)) self.wait(0.5) # Part 2: Understanding Gradients axes = Axes( x_range=[0, 10, 1], y_range=[0, 25, 5], axis_config={"include_numbers": True}, ) graph = axes.plot(lambda x: (x - 5)**2, color=BLUE) func_label = MathTex("f(x) = (x - 5)^2").next_to(axes, UP) self.play(Create(axes), Write(func_label)) self.play(Create(graph)) self.wait(1) # Gradient descent animation dot_min = Dot(axes.coords_to_point(7, (7 - 5)**2), color=RED) self.play(FadeIn(dot_min)) for _ in range(5): new_x = dot_min.get_center()[0] - 0.5 new_y = (new_x - 5)**2 new_dot = Dot(axes.coords_to_point(new_x, new_y), color=RED) self.play(Transform(dot_min, new_dot), run_time=0.5) self.wait(1) # Zoom effect on the minimum point self.play( axes.animate.scale(0.8).shift(LEFT * 2), dot_min.animate.scale(1.5), run_time=1.5 ) self.wait(1) self.play(FadeOut(axes), FadeOut(dot_min), FadeOut(func_label)) # Part 3: Comfort Score Function axes_3d = ThreeDAxes( x_range=[60, 80, 5], y_range=[30, 50, 5], z_range=[0, 100, 20], x_length=8, y_length=8, z_length=6 ) def comfort_score(t, h): return 72 - (t - 70)**2 - 2 * (h - 40)**2 surface = Surface( lambda u, v: axes_3d.c2p(u, v, comfort_score(u, v)), u_range=[60, 80], v_range=[30, 50], resolution=(20, 20), fill_opacity=0.7 ) surface.set_fill_by_value( axes=axes_3d, colors=[(RED, 0), (YELLOW, 50), (GREEN, 100)] ) # Set camera orientation and animate rotation self.set_camera_orientation(phi=75 * DEGREES, theta=-45 * DEGREES) self.add(axes_3d, surface) self.begin_ambient_camera_rotation(rate=0.2) self.wait(5) self.stop_ambient_camera_rotation() # Zoom into the peak of the surface self.move_camera(phi=90 * DEGREES, theta=-90 * DEGREES, zoom=1.5, run_time=2) self.wait(1) self.play(FadeOut(axes_3d), FadeOut(surface)) # Part 4: Bayesian Updating prior = [0.3, 0.7] bar_chart = BarChart( prior, max_value=1, bar_names=["Rain", "No Rain"], bar_colors=[BLUE, YELLOW] ) prior_label = Text("Prior Probabilities").next_to(bar_chart, DOWN) self.play(Create(bar_chart), Write(prior_label)) self.wait(2) posterior = [0.6, 0.4] updated_bar_chart = BarChart( posterior, max_value=1, bar_names=["Rain", "No Rain"], bar_colors=[BLUE, YELLOW] ) posterior_label = Text("Posterior Probabilities").next_to(updated_bar_chart, DOWN) self.play(Transform(bar_chart, updated_bar_chart), Transform(prior_label, posterior_label)) self.wait(2) bayes_formula = MathTex(r"P(H|E) = \frac{P(E|H)P(H)}{P(E)}").next_to(bar_chart, DOWN) self.play(Write(bayes_formula)) self.wait(2) # Zoom out for conclusion self.play( bar_chart.animate.scale(0.8).shift(LEFT * 2), bayes_formula.animate.scale(0.8).shift(RIGHT * 2), run_time=1.5 ) self.wait(1) # Part 5: Connecting the Dots self.clear() conclusion = Text( "Gradients and Bayesian updating both rely\non iterative refinement to achieve their goals.", font_size=24 ).to_edge(UP) self.play(Write(conclusion)) self.wait(3) # Part 6: Call to Action call_to_action = Text( "Explore more about optimization and Bayesian methods!", font_size=24 ).next_to(conclusion, DOWN) self.play(Write(call_to_action)) self.wait(3)