Spaces:
Running
Running
File size: 8,290 Bytes
8ad61d2 68b9a41 c858e30 54cb6c5 8ad61d2 d2ae102 8ad61d2 9faa18b 68b9a41 c858e30 7708b6c c76c7ee 9faa18b c76c7ee 68b9a41 7708b6c a8828c1 68b9a41 7708b6c 68b9a41 9faa18b 7708b6c 0a92df1 8ad61d2 13c2a66 c858e30 0a92df1 8ad61d2 c858e30 8ad61d2 9faa18b 8ad61d2 7708b6c 9faa18b 68b9a41 7708b6c c76c7ee 7708b6c 9faa18b 68b9a41 9faa18b 4fc760f c858e30 54cb6c5 c76c7ee 0a92df1 54cb6c5 8ad61d2 7708b6c 0a92df1 7708b6c 9faa18b 68b9a41 9faa18b 68b9a41 8ad61d2 68b9a41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import cv2 as cv
import numpy as np
from polylabel import polylabel
from .config import default_config
class GenerateIslands:
def __init__(self, indices_color_choices):
"""
Args:
indices_color_choices: 2D numpy array with the same shape as the image.
Shows the color index chosen for each pixel in the image.
"""
self.indices_color_choices = indices_color_choices
# List of coordinates for each islands border
self.island_borders = {}
for color_index in np.unique(indices_color_choices):
self.island_borders[color_index] = []
# Images of the islands
self.island_fills = {}
for color_index in np.unique(indices_color_choices):
self.island_fills[color_index] = []
# Coordinate of centroids of islands
self.island_centroids = {}
for color_index in np.unique(indices_color_choices):
self.island_centroids[color_index] = []
def _is_valid_shape(self, contours, hierarchy, total_area, area_perc_threshold,
arc_length_area_ratio_threshold):
holes_contours_ids = np.where(hierarchy[0,:,-1] != -1)[0]
hole_areas_sum = 0
for hole_contour_id in holes_contours_ids:
hole_area = cv.contourArea(contours[hole_contour_id])
hole_areas_sum += hole_area
external_contours_ids = np.where(hierarchy[0,:,-1] == -1)[0]
external_areas_sum = 0
external_arc_length = 0
for external_contour_id in external_contours_ids:
external_areas_sum += cv.contourArea(contours[external_contour_id])
external_arc_length += cv.arcLength(contours[external_contour_id],True)
total_island_area = external_areas_sum - hole_areas_sum
if total_island_area == 0:
return False
area_percentage = (total_island_area / total_area) * 100
arc_length_area_ratio = (external_arc_length / total_island_area)
if (area_percentage >= area_perc_threshold) \
and (arc_length_area_ratio <= arc_length_area_ratio_threshold):
return True
else:
return False
def _get_cleaned_up_contours(self, island_fill, area_perc_threshold,
arc_length_area_ratio_threshold, check_shape_validity):
contours_image = np.ones_like(island_fill)
total_area = self.indices_color_choices.shape[0] * self.indices_color_choices.shape[1]
contours, hierarchy = cv.findContours(
island_fill,
mode = cv.RETR_TREE,
method = cv.CHAIN_APPROX_NONE
)
if check_shape_validity:
is_valid_shape = self._is_valid_shape(
contours = contours,
hierarchy = hierarchy,
total_area = total_area,
area_perc_threshold = area_perc_threshold,
arc_length_area_ratio_threshold = arc_length_area_ratio_threshold
)
else:
is_valid_shape = True
contours_selected = []
hierarchy_selected = []
if is_valid_shape:
for cntr_id, contour in enumerate(contours):
area_fraction_perc = (cv.contourArea(contour) / total_area) * 100
if area_fraction_perc >= area_perc_threshold:
cv.drawContours(
image = contours_image,
contours = [contour],
contourIdx = 0,
color = (0,255,0),
thickness = 1)
contours_selected.append(contour)
hierarchy_selected.append(hierarchy[0][cntr_id])
# If the shape is not valid, return a blank image
return contours_image, \
contours_selected, \
np.array(hierarchy_selected)
def _get_centroid_for_island(self, contours, hierarchy):
if len(contours) == 0:
return np.array([np.nan, np.nan])
coordinates_for_polylabel = []
external_contours_ids = np.where(hierarchy[:,-1] == -1)[0]
for external_contour_id in external_contours_ids:
epsilon = 0.01 * cv.arcLength(contours[external_contour_id],True)
approx_contour = cv.approxPolyDP(contours[external_contour_id], epsilon, True)
coordinates_for_polylabel.append(approx_contour.squeeze())
holes_contours_ids = np.where(hierarchy[:,-1] != -1)[0]
for hole_contour_id in holes_contours_ids:
epsilon = 0.01 * cv.arcLength(contours[hole_contour_id],True)
approx_contour = cv.approxPolyDP(contours[hole_contour_id], epsilon, True)
coordinates_for_polylabel.append(approx_contour.squeeze())
centroid_coords = polylabel(coordinates_for_polylabel)
return [int(centroid_coords[0]), int(centroid_coords[1])]
def _get_islands_for_one_color(self, color_index, border_padding, area_perc_threshold,
arc_length_area_ratio_threshold, check_shape_validity,
open_kernel_size):
# Get a binary image with just the selected color
this_color = (self.indices_color_choices == color_index).astype(np.uint8)
# Pad the image to enable border detection on image boundaries
this_color = np.pad(this_color, border_padding, mode='constant', constant_values=0)
# Run the open morphological operation to remove small islands and isthmuses
kernel = np.ones((open_kernel_size, open_kernel_size),np.uint8)
this_color = cv.morphologyEx(this_color, cv.MORPH_OPEN, kernel)
# Find connected components
num_labels, labels_im = cv.connectedComponents(this_color)
for component_id in range(1, num_labels):
this_component = (labels_im == component_id).astype(np.uint8)
self.island_fills[color_index].append(this_component)
# Get cleaned up contours
cleaned_up_contours, contours_selected, hierarchies_selected = self._get_cleaned_up_contours(
island_fill = this_component,
area_perc_threshold = area_perc_threshold,
arc_length_area_ratio_threshold = arc_length_area_ratio_threshold,
check_shape_validity = check_shape_validity
)
# Get the centroid of the island
centroid_coords = self._get_centroid_for_island(
contours_selected,
hierarchies_selected
)
self.island_centroids[color_index].append(centroid_coords)
contour_border_coords = np.where(cleaned_up_contours == 0)
self.island_borders[color_index].append((color_index, contour_border_coords))
def get_islands(self, config = default_config):
border_padding = config["border_padding"]
area_perc_threshold = config["area_perc_threshold"]
arc_length_area_ratio_threshold = config["arc_length_area_ratio_threshold"]
check_shape_validity = config["check_shape_validity"]
open_kernel_size = config["open_kernel_size"]
for color_index in np.unique(self.indices_color_choices):
self._get_islands_for_one_color(
color_index = color_index,
border_padding = border_padding,
area_perc_threshold = area_perc_threshold,
arc_length_area_ratio_threshold = arc_length_area_ratio_threshold,
check_shape_validity = check_shape_validity,
open_kernel_size = open_kernel_size,
)
# Flatten the list of borders
island_borders_list = []
centroid_coords_list = []
for color_id in self.island_borders:
for idx, border_coords in enumerate(self.island_borders[color_id]):
if len(border_coords[1][0]) > 0:
island_borders_list.append(self.island_borders[color_id][idx])
centroid_coords_list.append(self.island_centroids[color_id][idx])
return island_borders_list, centroid_coords_list
|