m. polinsky
commited on
Commit
·
6ace3e9
1
Parent(s):
75fc93d
deleted streamlit app file
Browse files- streamlit_app.py +0 -227
streamlit_app.py
DELETED
@@ -1,227 +0,0 @@
|
|
1 |
-
# streamlit_app.py manages the whole TopicDig process
|
2 |
-
from typing import List, Set
|
3 |
-
from collections import namedtuple
|
4 |
-
import random
|
5 |
-
import requests
|
6 |
-
import json
|
7 |
-
|
8 |
-
from codetiming import Timer
|
9 |
-
import streamlit as st
|
10 |
-
|
11 |
-
from digestor import Digestor
|
12 |
-
from source import Source
|
13 |
-
from scrape_sources import NPRLite, CNNText, stub
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
def initialize(limit, rando, use_cache=True):
|
18 |
-
clusters: dict[str:List[namedtuple]] = dict()
|
19 |
-
# This is a container for the source classes.
|
20 |
-
# Make sure you handle this. Whats the deal.
|
21 |
-
sources:List[Source]= [] # Write them and import? Read a config?
|
22 |
-
# FOR NOW ONLY add this explicitly here.
|
23 |
-
# MUST read in final version though.
|
24 |
-
sources.append(NPRLite(
|
25 |
-
'npr',
|
26 |
-
'https://text.npr.org/1001',
|
27 |
-
'sshleifer/distilbart-cnn-12-6',
|
28 |
-
'dbmdz/bert-large-cased-finetuned-conll03-english'
|
29 |
-
))
|
30 |
-
sources.append(CNNText(
|
31 |
-
'cnn',
|
32 |
-
'https://lite.cnn.com',
|
33 |
-
'sshleifer/distilbart-cnn-12-6',
|
34 |
-
'dbmdz/bert-large-cased-finetuned-conll03-english'
|
35 |
-
))
|
36 |
-
|
37 |
-
|
38 |
-
# initialize list to hold cluster data namedtuples
|
39 |
-
cluster_data: List[namedtuple('article', ['link','hed','entities', 'source'])]
|
40 |
-
article_dict : dict[str:namedtuple]
|
41 |
-
|
42 |
-
# For all sources retrieve_cluster_data
|
43 |
-
# returns List[namedtuples] with empty entity lists
|
44 |
-
|
45 |
-
cluster_data = []
|
46 |
-
article_meta = namedtuple('article_meta',['source', 'count'])
|
47 |
-
cluster_meta : List[article_meta] = []
|
48 |
-
for data_source in sources:
|
49 |
-
if limit is not None:
|
50 |
-
c_data, c_meta = data_source.retrieve_cluster_data(limit//len(sources))
|
51 |
-
else:
|
52 |
-
c_data, c_meta = data_source.retrieve_cluster_data()
|
53 |
-
cluster_data.append(c_data)
|
54 |
-
cluster_meta.append(article_meta(data_source.source_name, c_meta))
|
55 |
-
st.session_state[data_source.source_name] = f"Number of clusters from source: {data_source.source_name}\n\t{len(c_data)}"
|
56 |
-
print("Finished...moving on to clustering...")
|
57 |
-
cluster_data = cluster_data[0] + cluster_data[1]
|
58 |
-
# NER
|
59 |
-
# iterate the list of namedtuples,
|
60 |
-
for tup in cluster_data:
|
61 |
-
# pass each hed to the api query method, return the dict
|
62 |
-
# through the ner_results function to the 'entities' list.
|
63 |
-
# Populate stub entities list
|
64 |
-
perform_ner(tup, cache=use_cache)
|
65 |
-
generate_clusters(clusters, tup)
|
66 |
-
st.session_state['num_clusters'] = f"""Total number of clusters: {len(clusters)}"""
|
67 |
-
|
68 |
-
# Article stubs tracks all stubs
|
69 |
-
# If cluster is unsummarized, its hed's value is the namedtuple stub.
|
70 |
-
# Else reference digestor instance so summary can be found.
|
71 |
-
article_dict = {stub.hed: stub for stub in cluster_data}
|
72 |
-
|
73 |
-
|
74 |
-
return article_dict, clusters
|
75 |
-
|
76 |
-
|
77 |
-
# Am I going to use this for those two lines?
|
78 |
-
def perform_ner(tup:namedtuple('article',['link','hed','entities', 'source']), cache=True):
|
79 |
-
with Timer(name="ner_query_time", logger=None):
|
80 |
-
result = ner_results(ner_query(
|
81 |
-
{
|
82 |
-
"inputs":tup.hed,
|
83 |
-
"paramters":
|
84 |
-
{
|
85 |
-
"use_cache": cache,
|
86 |
-
},
|
87 |
-
}
|
88 |
-
))
|
89 |
-
for i in result:
|
90 |
-
tup.entities.append(i)
|
91 |
-
|
92 |
-
|
93 |
-
@st.cache()
|
94 |
-
def ner_query(payload):
|
95 |
-
print("making a query....")
|
96 |
-
data = json.dumps(payload)
|
97 |
-
response = requests.request("POST", NER_API_URL, headers=headers, data=data)
|
98 |
-
return json.loads(response.content.decode("utf-8"))
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
def generate_clusters(
|
103 |
-
the_dict: dict,
|
104 |
-
tup : namedtuple('article_stub',[ 'link','hed','entities', 'source'])
|
105 |
-
) -> dict:
|
106 |
-
for entity in tup.entities:
|
107 |
-
# Add cluster if entity not already in dict
|
108 |
-
if entity not in the_dict:
|
109 |
-
the_dict[entity] = []
|
110 |
-
# Add this article's link to the cluster dict
|
111 |
-
the_dict[entity].append(tup)
|
112 |
-
|
113 |
-
|
114 |
-
def ner_results(ner_object, groups=True, NER_THRESHOLD=0.5) -> List[str]:
|
115 |
-
# empty lists to collect our entities
|
116 |
-
people, places, orgs, misc = [], [], [], []
|
117 |
-
|
118 |
-
# 'ent' and 'designation' handle the difference between dictionary keys
|
119 |
-
# for aggregation strategy grouped vs ungrouped
|
120 |
-
ent = 'entity' if not groups else 'entity_group'
|
121 |
-
designation = 'I-' if not groups else ''
|
122 |
-
|
123 |
-
# Define actions -- this is a switch-case dictionary.
|
124 |
-
# keys are the identifiers used inthe return dict from
|
125 |
-
# the ner_query.
|
126 |
-
# values are list.append() for each of the lists
|
127 |
-
# created at the top of the function. They hold sorted entities.
|
128 |
-
# actions is used to pass entities into the lists.
|
129 |
-
# Why I called it actions I have no idea rename it.
|
130 |
-
actions = {designation+'PER':people.append,
|
131 |
-
designation+'LOC':places.append,
|
132 |
-
designation+'ORG':orgs.append,
|
133 |
-
designation+'MISC':misc.append
|
134 |
-
} # Is this an antipattern?
|
135 |
-
|
136 |
-
# For each dictionary in the ner result list, if the entity str doesn't contain a '#'
|
137 |
-
# and the confidence is > 90%, add the entity to the list for its type.
|
138 |
-
|
139 |
-
# actions[d[ent]](d['word']) accesses the key of actions that is returned
|
140 |
-
# from d[ent] and then passes the entity name, returned by d['word'] to
|
141 |
-
# the 'list.append' waiting to be called in the dict actions.
|
142 |
-
# Note the (). We access actions to call its append...
|
143 |
-
readable = [ actions[d[ent]](d['word']) for d in ner_object if '#' not in d['word'] and d['score'] > NER_THRESHOLD ]
|
144 |
-
|
145 |
-
# create list of all entities to return
|
146 |
-
ner_list = [i for i in set(people) if len(i) > 2] + [i for i in set(places) if len(i) > 2] + [i for i in set(orgs) if len(i) > 2] + [i for i in set(misc) if len(i) > 2]
|
147 |
-
|
148 |
-
return ner_list
|
149 |
-
|
150 |
-
# These could be passed through the command line
|
151 |
-
# or read from a config file.
|
152 |
-
# One of these is needed here for NER and one in Digestor for summarization.
|
153 |
-
NER_API_URL = "https://api-inference.huggingface.co/models/dbmdz/bert-large-cased-finetuned-conll03-english"
|
154 |
-
headers = {"Authorization": f"""Bearer {st.secrets['ato']}"""}
|
155 |
-
|
156 |
-
LIMIT = 20 # Controls time and number of clusters.
|
157 |
-
USE_CACHE = True
|
158 |
-
|
159 |
-
if not USE_CACHE:
|
160 |
-
print("NOT USING CACHE--ARE YOU GATHERING DATA?")
|
161 |
-
if LIMIT is not None:
|
162 |
-
print(f"LIMIT: {LIMIT}")
|
163 |
-
|
164 |
-
# digest store
|
165 |
-
digests = dict() # key is cluster, value is digestor object
|
166 |
-
out_dicts = []
|
167 |
-
# list to accept user choices
|
168 |
-
# retrieve cluster data and create dict to track each article (articleStubs)
|
169 |
-
# and create topic clusters by performing ner.
|
170 |
-
print("Initializing....")
|
171 |
-
article_dict, clusters = initialize(LIMIT, USE_CACHE)
|
172 |
-
# We now have clusters and cluster data. Redundancy.
|
173 |
-
# We call a display function and get the user input.
|
174 |
-
# For this its still streamlit.
|
175 |
-
|
176 |
-
# button to refresh topics
|
177 |
-
if st.button("Refresh topics!"):
|
178 |
-
article_dict, clusters = initialize(LIMIT, USE_CACHE)
|
179 |
-
|
180 |
-
selections = []
|
181 |
-
choices = list(clusters.keys())
|
182 |
-
choices.insert(0,'None')
|
183 |
-
|
184 |
-
st.write(st.session_state['cnn'])
|
185 |
-
st.write(st.session_state['npr'])
|
186 |
-
st.write(st.session_state['num_clusters'])
|
187 |
-
|
188 |
-
|
189 |
-
# Form used to take 3 menu inputs
|
190 |
-
with st.form(key='columns_in_form'):
|
191 |
-
cols = st.columns(3)
|
192 |
-
for i, col in enumerate(cols):
|
193 |
-
selections.append(col.selectbox(f'Make a Selection', choices, key=i))
|
194 |
-
submitted = st.form_submit_button('Submit')
|
195 |
-
if submitted:
|
196 |
-
selections = [i for i in selections if i is not None]
|
197 |
-
with st.spinner(text="Digesting...please wait, this will take a few moments...Maybe check some messages or start reading the latest papers on summarization with transformers...."):
|
198 |
-
chosen = []
|
199 |
-
|
200 |
-
for i in selections: # i is supposed to be a list of stubs, mostly one
|
201 |
-
if i != 'None':
|
202 |
-
for j in clusters[i]:
|
203 |
-
if j not in chosen:
|
204 |
-
chosen.append(j) # j is a stub.
|
205 |
-
|
206 |
-
|
207 |
-
# Digestor uses 'chosen' to create digest.
|
208 |
-
# 'user_choicese' is passed for reference.
|
209 |
-
digestor = Digestor(timer=Timer(), cache = USE_CACHE, stubs=chosen, user_choices=list(selections))
|
210 |
-
# happens internally but may be used differently so it isn't automatic upon digestor creation.
|
211 |
-
# Easily turn caching off for testing.
|
212 |
-
digestor.digest() # creates summaries and stores them associated with the digest
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
# Get displayable digest and digest data
|
217 |
-
digestor.build_digest()
|
218 |
-
|
219 |
-
|
220 |
-
if len(digestor.text) == 0:
|
221 |
-
st.write("You didn't select a topic!")
|
222 |
-
else:
|
223 |
-
st.write("Your digest is ready:\n")
|
224 |
-
|
225 |
-
st.write(digestor.text)
|
226 |
-
|
227 |
-
"st.session_state object:", st.session_state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|