File size: 14,071 Bytes
267bd18
 
 
 
 
 
 
 
 
 
770381c
267bd18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import os
from langchain.chains.router import MultiPromptChain
from langchain.chains.router.llm_router import LLMRouterChain,RouterOutputParser
# from langchain.prompts import PromptTemplate
from langchain.prompts import ChatPromptTemplate
from langchain import OpenAI, LLMChain, PromptTemplate
from langchain.memory import ConversationBufferMemory
import os
import openai
from langchain.chat_models import ChatOpenAI
from api_call import send_request
from langchain.llms import LlamaCpp
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])

# questions = {
#     'buy house or loan': 'Do you want to buy a house or loan for it?',
#     'zip code':'Could you please provide me with the zip code of the area where you are looking to buy a home?',
#     'home feature' : 'Can you describe the desired features of your dream home and your goals',
#     'budget' : 'What is your budget for buying a home?',
#     'first time buyer' : 'Are you a first-time buyer?',
#     'introduce' : 'Hi. I\'m here to assist you with buying a home or getting a loan. Could you please provide me with some information to help you better?',
#     'ignored' : 'I don\'t understand. Could you please rephrase your question?',
#     'ask_question' : 'Could you please provide me with the zip code of the area where you are looking to buy a home?'    
#       }


# questions = {
#     'buy house or loan': 'Which one are you more interested in? Buy a house or loan for it?',
#     'zip code':'Could you please provide me with the zip code of the area where you are looking to buy a home?',
#     'home feature' : 'Can you describe the desired features of your dream home and your goals',
#     'budget' : 'What is your budget for buying a home?',
#     'first time buyer' : 'Are you a first-time buyer?',
#     'introduce' : 'Hi I’m Samar, your real state assistant. In 60 seconds I can help you find a house or how to save $500 on your loans.',
#     'ignored' : 'I don\'t understand. Could you please rephrase your question?',
#     'ask_question' : 'Could you please provide me with the zip code of the area where you are looking to buy a home?'    
#       }


questions = {
    'buy house or loan': 'Are you currently in the market to purchase or rent a home?',
    'zip code':'Could you please provide me with the zip code of the area where you are looking to buy a home?',
    'home feature' : 'Can you describe the desired features of your dream home and your goals',
    'budget' : 'What is your budget for buying a home?',
    'first time buyer' : 'Are you a first-time buyer?',
    'introduce' : 'Hi, this is Samar from Royal Real State Agency. I hope you\'re doing well! I wanted to reach out because \
        I noticed your interest in real estate and thought I could assist you in finding the perfect home.',
    'ignored' : 'I don\'t understand. Could you please rephrase your question?',
    'ask_question' : 'Could you please provide me with the zip code of the area where you are looking to buy a home?'    
      }

def init_chain():

    budget_template = """ You are a compressor that get a question and answer aboute money/budget and extremly compress the answer into a number and return an integer number.
    example: if input=600k then output=600000
    Here is the question :
    {question}
    Here is the answer :
    {answer}"""
    
    zipcode_templet = """ You are a compressor that get a question and answer aboute zip code and extremly compress the answer into a number and return only a number.
    Here is the question :
    {question}
    Here is the answer :
    {answer}"""
    
    feature_template = """ You are a compressor that get a question and answer about desiered home feature and extract home feature from the answer into a short term.
    Here is the question :
    {question}
    Here is the answer :
    {answer}"""
   
    buy_loan_template = """ You are a compressor that get a question and answer a bout buy house or loan, and extremly compress the answer into short term.
    Here is the question :
    {question}
    Here is the answer :
    {answer}"""
    
    first_buyer_template = """ You are a compressor that get a question and answer a bout buy house or loan, and extremly compress the answer into short term.
    Here is the question :
    {question}
    Here is the answer :
    {answer}"""
    
    home_feature_template = """ You are a prompt generator to generate a sentence to describe a home property \ 
                            for a buyer based on the input_data. for example describe prices, floorSizeValue,numRoom \
                            numFloor, numBedroom, neighborhoods, floorSizeValue, feature item of input_data.
    Here is the input_data :
    {input_data}
    """

    cat_task_template = """ You are a classifier to assign input_message into one of the below categoryis. \
        categoryis Item: \
        - `buy house or loan `: (example: Are you currently in the market to purchase or rent a home? yes. buy a house) \
        - `budget`:  (example: What is your budget for buying a home? 600k or 5000$ or 8000 or I have 36000$ money) \
        - `first time buyer`:  (example: Are you a first-time buyer? yes) \
        - `zip code` : (example: Could you please provide me with the zip code of the area you are interested in? 19701 , 85412 , ...)
        - `home feature' : (example : Can you describe the desired features of your dream home and your goals? 2 rooms)
        - `ignored` : a message that don't related to any question and is a unusaul message. 

        Here is the input_message and question :
        {input_message}
        output:
        return the detected category.
    """
    prompt_infos = [
    {
        "name": "budget",
        "prompt_template": budget_template
    },
    {
        "name": "zip code",
        "prompt_template": zipcode_templet
    },
    {
        "name": "home feature",
        "prompt_template": feature_template
    },
    {
        "name": "buy house or loan", 
        "prompt_template": buy_loan_template
    },
    {
        "name": "first time buyer", 
        "prompt_template": first_buyer_template
    }, 
    {
        "name": "home_feature", 
        "prompt_template": home_feature_template
    },
    {
        "name": "category", 
        "prompt_template": cat_task_template
    },
    ]
    destination_chains = {}
    for p_info in prompt_infos:
        name = p_info["name"]
        prompt_template = p_info["prompt_template"]
        prompt = ChatPromptTemplate.from_template(template=prompt_template,)
        chain = LLMChain(llm=llm, prompt=prompt)
        destination_chains[name] = chain 
    return destination_chains


#Age + Pricing
llm = ChatOpenAI(temperature=0.0)
# llm = LlamaCpp(
#     model_path="/home/yaghoubian/yaghoubian/fast_avatar/hrviton/ControlNet-v1-1-nightly/lang_chain/aa/llama-2-7b-chat.ggmlv3.q6_K.bin",
#     input={"temperature": 0.1, "max_length": 2000, "top_p": 1},
#     callback_manager=callback_manager,)

# prompt_instruction = """  
# Instructions: you are a classifier for classify input message into one of the below categoryis. \
# categoryis Item: \
#  -`math_question` \
#  -`Historical` \
#  Here is the question: what is 1+1? \
# """
# print("before a")
# a = llm(prompt_instruction)
# print(a)

chains = init_chain()

def state_handler(message,user_state=None, user_info=None,gathered_info=None):
    if user_info == None:
        print("new_user")
        user_state = ['introduce','buy house or loan','zip code','home feature','budget','first time buyer']
        user_info = questions[user_state[0]] + "\n" +  questions[user_state[1]]
        gathered_info = {}
        user_state.remove('introduce')
        return user_state,user_info,gathered_info
    else:
        assigned_classes = category(input_message = user_info.split('\n')[-1] + " " + message)
        
        for assigned_class in assigned_classes : 
            Short_response, user_state= compress_response(input_message=message,input_question=questions[assigned_class],\
                                                        user_state=user_state,assigned_class=assigned_class,user_info=user_info)
            print (f"{assigned_class}  :  {Short_response}")
            gathered_info[assigned_class] = Short_response
            
        if len(user_state)>0:
            if 'rephrase your answer for this question' in Short_response:
                user_info = Short_response
            else :
                user_info = questions[user_state[0]]
        else:
            res,response = send_request(gathered_info['budget'],gathered_info['zip code'])
            # print("Start Zillow scraping. ")
            # res,response = send_zillow_request(gathered_info['budget'],gathered_info['zip code'])
            if response == None:
                user_info = "Sorry, there is an error in searching result. please try again."
            else:
                if res>0:
                    user_info = f"This is your information: \n{gathered_info}. \n we find {res} results." #\
                                # \n  Here is the result specification: \n {response}."
                    for idx,i in enumerate(response): 
                        in_feature =f" numBathroom: {i['numBathroom']} , numRoom: {i['numRoom']}, numFloor: {i['numFloor']},  yearBuilt:{i['yearBuilt']}, floorSizeValue: {i['floorSizeValue']} {i['floorSizeUnit']} "
                        home_feature_prompt = chains['home_feature'].run(input_data=in_feature)
                        print("home_feature_prompt: ",home_feature_prompt)
                        try: 
                            user_info = user_info + f"\n{idx+1}- " +home_feature_prompt + f"\n {str(i['mostRecentPriceSourceURL'])} \n"
                        except: 
                            user_info = user_info + f"\n{idx+1}- " +home_feature_prompt

                else : 
                    user_info = f"This is your information: \n{gathered_info}. \n Sorry. we can't find \
                                    any case by the entered budget and zip code"

        return user_state,user_info,gathered_info


def category(input_message):
    
    # os.environ["OPENAI_API_KEY"] = "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"
    # llm = ChatOpenAI(temperature=0.1)

    # # You are a chatbot. you must read the input message and \
    # # tag or categorize it to one of the below item 

    # new_task_template = """ You are a classifier to assign input_message into one (or more than one) of the below categoryis.\  
    # categoryis Item: \
    # - `buy house or loan `: (example: do you want to buy a house ot loan for it? buy a house) \
    # - `budget`:  (example: What is your budget for buying a home? 5000$ or 8000 or I have 36000$ money) \
    # - `first time buyer`:  (example: Are you a first-time buyer? yes) \
    # - `zip code` : (example: Could you please provide me with the zip code of the area you are interested in? 8542)
    # - `home feature' : (example : Can you describe the desired features of your dream home and your goals? 2 rooms)
    # - `introduce` : (example: Hi. I'm here to assist you with buying a home or getting a loan.)
    # - `ignored` : a message that don't related to any question and is a unusaul message. 
    # - `ask_question` : (example: Could you please provide me with some information to help you better? Sure.).

    # Here is the input message :
    # {input_message}
    # output:
    # return the detected category.
    # """
    # prompt = ChatPromptTemplate.from_template(template=new_task_template,)
    # cat_chain = LLMChain(llm=llm, prompt=prompt)

    classe_list = ["buy house or loan","budget","first time buyer","zip code","home feature"]
    
    message_classes = chains['category'].run(input_message=input_message)
    
    detected_classes = []
    for i in classe_list:
        if i in message_classes.lower():
            detected_classes.append(i)
    print("detected_classes: ",detected_classes)
    return detected_classes


def compress_response(input_message,input_question,user_state,assigned_class=None,user_info=None): 

    # new_task_template = """ You are a compressor that get a question and answer and extremly compress the answer into short term. \  
    # Here is the question :
    # {question}
    # Here is the answer :
    # {answer}
    # """
    # prompt = ChatPromptTemplate.from_template(template=new_task_template)
    # chain = LLMChain(llm=llm, prompt=prompt)
    
    if  "buy house or loan"in assigned_class.lower():
        user_state.remove('buy house or loan')
        chain = chains[assigned_class]
        response = chain.run(question=input_question , answer=input_message)
    elif  'zip code'in assigned_class.lower():
        user_state.remove('zip code')
        chain = chains[assigned_class]
        response = chain.run(question=input_question , answer=input_message)
    elif  'home feature'in assigned_class.lower():
        user_state.remove('home feature')
        chain = chains[assigned_class]
        response = chain.run(question=input_question , answer=input_message)
    elif  'budget' in assigned_class.lower():
        user_state.remove('budget')
        chain = chains[assigned_class]
        response = chain.run(question=input_question , answer=input_message)
    elif 'first time buyer' in assigned_class.lower():
        user_state.remove('first time buyer')
        chain = chains[assigned_class]
        response = chain.run(question=input_question , answer=input_message)
    elif 'ignored' in assigned_class.lower():
        # user_state.remove('ignored')
        response = f"I can't understand your answer. please rephrase your answer for this question. \n {user_info}"

    return response ,user_state 






# Great. You can see this website to see the house feature.
 
# https://www.zillow.com/homes/22201-wayside-Mission-viej-CA92692_ib/25614382_zpid