Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- requirements.txt +2 -2
- run.ipynb +1 -1
- run.py +0 -2
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
gradio-client @ git+https://github.com/gradio-app/gradio@
|
2 |
-
https://gradio-builds.s3.amazonaws.com/
|
3 |
vega_datasets
|
4 |
pandas
|
|
|
1 |
+
gradio-client @ git+https://github.com/gradio-app/gradio@9b42ba8f1006c05d60a62450d3036ce0d6784f86#subdirectory=client/python
|
2 |
+
https://gradio-builds.s3.amazonaws.com/9b42ba8f1006c05d60a62450d3036ce0d6784f86/gradio-4.39.0-py3-none-any.whl
|
3 |
vega_datasets
|
4 |
pandas
|
run.ipynb
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: scatter_plot"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio vega_datasets pandas"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from vega_datasets import data\n", "\n", "cars = data.cars()\n", "iris = data.iris()\n", "\n", "# # Or generate your own fake data\n", "\n", "# import pandas as pd\n", "# import random\n", "\n", "# cars_data = {\n", "# \"Name\": [\"car name \" + f\" {int(i/10)}\" for i in range(400)],\n", "# \"Miles_per_Gallon\": [random.randint(10, 30) for _ in range(400)],\n", "# \"Origin\": [random.choice([\"USA\", \"Europe\", \"Japan\"]) for _ in range(400)],\n", "# \"Horsepower\": [random.randint(50, 250) for _ in range(400)],\n", "# }\n", "\n", "# iris_data = {\n", "# \"petalWidth\": [round(random.uniform(0, 2.5), 2) for _ in range(150)],\n", "# \"petalLength\": [round(random.uniform(0, 7), 2) for _ in range(150)],\n", "# \"species\": [\n", "# random.choice([\"setosa\", \"versicolor\", \"virginica\"]) for _ in range(150)\n", "# ],\n", "# }\n", "\n", "# cars = pd.DataFrame(cars_data)\n", "# iris = pd.DataFrame(iris_data)\n", "\n", "
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: scatter_plot"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio vega_datasets pandas"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from vega_datasets import data\n", "\n", "cars = data.cars()\n", "iris = data.iris()\n", "\n", "# # Or generate your own fake data\n", "\n", "# import pandas as pd\n", "# import random\n", "\n", "# cars_data = {\n", "# \"Name\": [\"car name \" + f\" {int(i/10)}\" for i in range(400)],\n", "# \"Miles_per_Gallon\": [random.randint(10, 30) for _ in range(400)],\n", "# \"Origin\": [random.choice([\"USA\", \"Europe\", \"Japan\"]) for _ in range(400)],\n", "# \"Horsepower\": [random.randint(50, 250) for _ in range(400)],\n", "# }\n", "\n", "# iris_data = {\n", "# \"petalWidth\": [round(random.uniform(0, 2.5), 2) for _ in range(150)],\n", "# \"petalLength\": [round(random.uniform(0, 7), 2) for _ in range(150)],\n", "# \"species\": [\n", "# random.choice([\"setosa\", \"versicolor\", \"virginica\"]) for _ in range(150)\n", "# ],\n", "# }\n", "\n", "# cars = pd.DataFrame(cars_data)\n", "# iris = pd.DataFrame(iris_data)\n", "\n", "def scatter_plot_fn(dataset):\n", " if dataset == \"iris\":\n", " return gr.ScatterPlot(\n", " value=iris,\n", " x=\"petalWidth\",\n", " y=\"petalLength\",\n", " color=\"species\",\n", " title=\"Iris Dataset\",\n", " color_legend_title=\"Species\",\n", " x_title=\"Petal Width\",\n", " y_title=\"Petal Length\",\n", " tooltip=[\"petalWidth\", \"petalLength\", \"species\"],\n", " caption=\"\",\n", " )\n", " else:\n", " return gr.ScatterPlot(\n", " value=cars,\n", " x=\"Horsepower\",\n", " y=\"Miles_per_Gallon\",\n", " color=\"Origin\",\n", " tooltip=\"Name\",\n", " title=\"Car Data\",\n", " y_title=\"Miles per Gallon\",\n", " color_legend_title=\"Origin of Car\",\n", " caption=\"MPG vs Horsepower of various cars\",\n", " )\n", "\n", "with gr.Blocks() as scatter_plot:\n", " with gr.Row():\n", " with gr.Column():\n", " dataset = gr.Dropdown(choices=[\"cars\", \"iris\"], value=\"cars\")\n", " with gr.Column():\n", " plot = gr.ScatterPlot()\n", " dataset.change(scatter_plot_fn, inputs=dataset, outputs=plot)\n", " scatter_plot.load(fn=scatter_plot_fn, inputs=dataset, outputs=plot)\n", "\n", "if __name__ == \"__main__\":\n", " scatter_plot.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
CHANGED
@@ -27,7 +27,6 @@ iris = data.iris()
|
|
27 |
# cars = pd.DataFrame(cars_data)
|
28 |
# iris = pd.DataFrame(iris_data)
|
29 |
|
30 |
-
|
31 |
def scatter_plot_fn(dataset):
|
32 |
if dataset == "iris":
|
33 |
return gr.ScatterPlot(
|
@@ -55,7 +54,6 @@ def scatter_plot_fn(dataset):
|
|
55 |
caption="MPG vs Horsepower of various cars",
|
56 |
)
|
57 |
|
58 |
-
|
59 |
with gr.Blocks() as scatter_plot:
|
60 |
with gr.Row():
|
61 |
with gr.Column():
|
|
|
27 |
# cars = pd.DataFrame(cars_data)
|
28 |
# iris = pd.DataFrame(iris_data)
|
29 |
|
|
|
30 |
def scatter_plot_fn(dataset):
|
31 |
if dataset == "iris":
|
32 |
return gr.ScatterPlot(
|
|
|
54 |
caption="MPG vs Horsepower of various cars",
|
55 |
)
|
56 |
|
|
|
57 |
with gr.Blocks() as scatter_plot:
|
58 |
with gr.Row():
|
59 |
with gr.Column():
|