aliabd HF Staff commited on
Commit
e655ee4
·
1 Parent(s): 3109ff5

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. README.md +1 -1
  2. requirements.txt +1 -1
  3. run.ipynb +1 -1
  4. run.py +4 -4
README.md CHANGED
@@ -5,7 +5,7 @@ emoji: 🔥
5
  colorFrom: indigo
6
  colorTo: indigo
7
  sdk: gradio
8
- sdk_version: 3.50.2
9
  app_file: run.py
10
  pinned: false
11
  hf_oauth: true
 
5
  colorFrom: indigo
6
  colorTo: indigo
7
  sdk: gradio
8
+ sdk_version: 4.0.2
9
  app_file: run.py
10
  pinned: false
11
  hf_oauth: true
requirements.txt CHANGED
@@ -1 +1 @@
1
- https://gradio-builds.s3.amazonaws.com/5524e590577769b0444a5332b8d444aafb0c5c12/gradio-3.50.2-py3-none-any.whl
 
1
+ https://gradio-builds.s3.amazonaws.com/874005938d65543c4cefe610a17e58d2ec7b3fb1/gradio-4.0.2-py3-none-any.whl
run.ipynb CHANGED
@@ -1 +1 @@
1
- {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: cancel_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import time\n", "import gradio as gr\n", "\n", "\n", "def fake_diffusion(steps):\n", " for i in range(steps):\n", " print(f\"Current step: {i}\")\n", " time.sleep(0.2)\n", " yield str(i)\n", "\n", "\n", "def long_prediction(*args, **kwargs):\n", " time.sleep(10)\n", " return 42\n", "\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Row():\n", " with gr.Column():\n", " n = gr.Slider(1, 10, value=9, step=1, label=\"Number Steps\")\n", " run = gr.Button(value=\"Start Iterating\")\n", " output = gr.Textbox(label=\"Iterative Output\")\n", " stop = gr.Button(value=\"Stop Iterating\")\n", " with gr.Column():\n", " textbox = gr.Textbox(label=\"Prompt\")\n", " prediction = gr.Number(label=\"Expensive Calculation\")\n", " run_pred = gr.Button(value=\"Run Expensive Calculation\")\n", " with gr.Column():\n", " cancel_on_change = gr.Textbox(label=\"Cancel Iteration and Expensive Calculation on Change\")\n", " cancel_on_submit = gr.Textbox(label=\"Cancel Iteration and Expensive Calculation on Submit\")\n", " echo = gr.Textbox(label=\"Echo\")\n", " with gr.Row():\n", " with gr.Column():\n", " image = gr.Image(source=\"webcam\", tool=\"editor\", label=\"Cancel on edit\", interactive=True)\n", " with gr.Column():\n", " video = gr.Video(source=\"webcam\", label=\"Cancel on play\", interactive=True)\n", "\n", " click_event = run.click(fake_diffusion, n, output)\n", " stop.click(fn=None, inputs=None, outputs=None, cancels=[click_event])\n", " pred_event = run_pred.click(fn=long_prediction, inputs=[textbox], outputs=prediction)\n", "\n", " cancel_on_change.change(None, None, None, cancels=[click_event, pred_event])\n", " cancel_on_submit.submit(lambda s: s, cancel_on_submit, echo, cancels=[click_event, pred_event])\n", " image.edit(None, None, None, cancels=[click_event, pred_event])\n", " video.play(None, None, None, cancels=[click_event, pred_event])\n", "\n", " demo.queue(concurrency_count=2, max_size=20)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: cancel_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import time\n", "import gradio as gr\n", "\n", "\n", "def fake_diffusion(steps):\n", " for i in range(steps):\n", " print(f\"Current step: {i}\")\n", " time.sleep(1)\n", " yield str(i)\n", "\n", "\n", "def long_prediction(*args, **kwargs):\n", " time.sleep(10)\n", " return 42\n", "\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Row():\n", " with gr.Column():\n", " n = gr.Slider(1, 10, value=9, step=1, label=\"Number Steps\")\n", " run = gr.Button(value=\"Start Iterating\")\n", " output = gr.Textbox(label=\"Iterative Output\")\n", " stop = gr.Button(value=\"Stop Iterating\")\n", " with gr.Column():\n", " textbox = gr.Textbox(label=\"Prompt\")\n", " prediction = gr.Number(label=\"Expensive Calculation\")\n", " run_pred = gr.Button(value=\"Run Expensive Calculation\")\n", " with gr.Column():\n", " cancel_on_change = gr.Textbox(label=\"Cancel Iteration and Expensive Calculation on Change\")\n", " cancel_on_submit = gr.Textbox(label=\"Cancel Iteration and Expensive Calculation on Submit\")\n", " echo = gr.Textbox(label=\"Echo\")\n", " with gr.Row():\n", " with gr.Column():\n", " image = gr.Image(sources=[\"webcam\"], tool=\"editor\", label=\"Cancel on edit\", interactive=True)\n", " with gr.Column():\n", " video = gr.Video(sources=[\"webcam\"], label=\"Cancel on play\", interactive=True)\n", "\n", " click_event = run.click(fake_diffusion, n, output)\n", " stop.click(fn=None, inputs=None, outputs=None, cancels=[click_event])\n", " pred_event = run_pred.click(fn=long_prediction, inputs=[textbox], outputs=prediction)\n", "\n", " cancel_on_change.change(None, None, None, cancels=[click_event, pred_event])\n", " cancel_on_submit.submit(lambda s: s, cancel_on_submit, echo, cancels=[click_event, pred_event])\n", " image.edit(None, None, None, cancels=[click_event, pred_event])\n", " video.play(None, None, None, cancels=[click_event, pred_event])\n", "\n", " demo.queue(max_size=20)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
run.py CHANGED
@@ -5,7 +5,7 @@ import gradio as gr
5
  def fake_diffusion(steps):
6
  for i in range(steps):
7
  print(f"Current step: {i}")
8
- time.sleep(0.2)
9
  yield str(i)
10
 
11
 
@@ -31,9 +31,9 @@ with gr.Blocks() as demo:
31
  echo = gr.Textbox(label="Echo")
32
  with gr.Row():
33
  with gr.Column():
34
- image = gr.Image(source="webcam", tool="editor", label="Cancel on edit", interactive=True)
35
  with gr.Column():
36
- video = gr.Video(source="webcam", label="Cancel on play", interactive=True)
37
 
38
  click_event = run.click(fake_diffusion, n, output)
39
  stop.click(fn=None, inputs=None, outputs=None, cancels=[click_event])
@@ -44,7 +44,7 @@ with gr.Blocks() as demo:
44
  image.edit(None, None, None, cancels=[click_event, pred_event])
45
  video.play(None, None, None, cancels=[click_event, pred_event])
46
 
47
- demo.queue(concurrency_count=2, max_size=20)
48
 
49
  if __name__ == "__main__":
50
  demo.launch()
 
5
  def fake_diffusion(steps):
6
  for i in range(steps):
7
  print(f"Current step: {i}")
8
+ time.sleep(1)
9
  yield str(i)
10
 
11
 
 
31
  echo = gr.Textbox(label="Echo")
32
  with gr.Row():
33
  with gr.Column():
34
+ image = gr.Image(sources=["webcam"], tool="editor", label="Cancel on edit", interactive=True)
35
  with gr.Column():
36
+ video = gr.Video(sources=["webcam"], label="Cancel on play", interactive=True)
37
 
38
  click_event = run.click(fake_diffusion, n, output)
39
  stop.click(fn=None, inputs=None, outputs=None, cancels=[click_event])
 
44
  image.edit(None, None, None, cancels=[click_event, pred_event])
45
  video.play(None, None, None, cancels=[click_event, pred_event])
46
 
47
+ demo.queue(max_size=20)
48
 
49
  if __name__ == "__main__":
50
  demo.launch()