Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- requirements.txt +2 -2
- run.ipynb +1 -1
- run.py +8 -1
requirements.txt
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
-
gradio-client @ git+https://github.com/gradio-app/gradio@
|
2 |
-
https://gradio-builds.s3.amazonaws.com/
|
|
|
1 |
+
gradio-client @ git+https://github.com/gradio-app/gradio@ee804b2d567b4381ef90b1f035d42fe6bb2506bc#subdirectory=client/python
|
2 |
+
https://gradio-builds.s3.amazonaws.com/ee804b2d567b4381ef90b1f035d42fe6bb2506bc/gradio-4.23.0-py3-none-any.whl
|
run.ipynb
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: cancel_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import time\n", "import gradio as gr\n", "\n", "\n", "def fake_diffusion(steps):\n", " for i in range(steps):\n", " print(f\"Current step: {i}\")\n", " time.sleep(0.
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: cancel_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import time\n", "import gradio as gr\n", "import atexit\n", "import pathlib\n", "\n", "log_file = (pathlib.Path(__file__).parent / \"cancel_events_output_log.txt\").resolve()\n", "\n", "def fake_diffusion(steps):\n", " log_file.write_text(\"\")\n", " for i in range(steps):\n", " print(f\"Current step: {i}\")\n", " with log_file.open(\"a\") as f:\n", " f.write(f\"Current step: {i}\\n\")\n", " time.sleep(0.2)\n", " yield str(i)\n", "\n", "\n", "def long_prediction(*args, **kwargs):\n", " time.sleep(10)\n", " return 42\n", "\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Row():\n", " with gr.Column():\n", " n = gr.Slider(1, 10, value=9, step=1, label=\"Number Steps\")\n", " run = gr.Button(value=\"Start Iterating\")\n", " output = gr.Textbox(label=\"Iterative Output\")\n", " stop = gr.Button(value=\"Stop Iterating\")\n", " with gr.Column():\n", " textbox = gr.Textbox(label=\"Prompt\")\n", " prediction = gr.Number(label=\"Expensive Calculation\")\n", " run_pred = gr.Button(value=\"Run Expensive Calculation\")\n", " with gr.Column():\n", " cancel_on_change = gr.Textbox(label=\"Cancel Iteration and Expensive Calculation on Change\")\n", " cancel_on_submit = gr.Textbox(label=\"Cancel Iteration and Expensive Calculation on Submit\")\n", " echo = gr.Textbox(label=\"Echo\")\n", " with gr.Row():\n", " with gr.Column():\n", " image = gr.Image(sources=[\"webcam\"], label=\"Cancel on clear\", interactive=True)\n", " with gr.Column():\n", " video = gr.Video(sources=[\"webcam\"], label=\"Cancel on start recording\", interactive=True)\n", "\n", " click_event = run.click(fake_diffusion, n, output)\n", " stop.click(fn=None, inputs=None, outputs=None, cancels=[click_event])\n", " pred_event = run_pred.click(fn=long_prediction, inputs=[textbox], outputs=prediction)\n", "\n", " cancel_on_change.change(None, None, None, cancels=[click_event, pred_event])\n", " cancel_on_submit.submit(lambda s: s, cancel_on_submit, echo, cancels=[click_event, pred_event])\n", " image.clear(None, None, None, cancels=[click_event, pred_event])\n", " video.start_recording(None, None, None, cancels=[click_event, pred_event])\n", "\n", " demo.queue(max_size=20)\n", " atexit.register(lambda: log_file.unlink())\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
CHANGED
@@ -1,11 +1,17 @@
|
|
1 |
import time
|
2 |
import gradio as gr
|
|
|
|
|
3 |
|
|
|
4 |
|
5 |
def fake_diffusion(steps):
|
|
|
6 |
for i in range(steps):
|
7 |
print(f"Current step: {i}")
|
8 |
-
|
|
|
|
|
9 |
yield str(i)
|
10 |
|
11 |
|
@@ -45,6 +51,7 @@ with gr.Blocks() as demo:
|
|
45 |
video.start_recording(None, None, None, cancels=[click_event, pred_event])
|
46 |
|
47 |
demo.queue(max_size=20)
|
|
|
48 |
|
49 |
if __name__ == "__main__":
|
50 |
demo.launch()
|
|
|
1 |
import time
|
2 |
import gradio as gr
|
3 |
+
import atexit
|
4 |
+
import pathlib
|
5 |
|
6 |
+
log_file = (pathlib.Path(__file__).parent / "cancel_events_output_log.txt").resolve()
|
7 |
|
8 |
def fake_diffusion(steps):
|
9 |
+
log_file.write_text("")
|
10 |
for i in range(steps):
|
11 |
print(f"Current step: {i}")
|
12 |
+
with log_file.open("a") as f:
|
13 |
+
f.write(f"Current step: {i}\n")
|
14 |
+
time.sleep(0.2)
|
15 |
yield str(i)
|
16 |
|
17 |
|
|
|
51 |
video.start_recording(None, None, None, cancels=[click_event, pred_event])
|
52 |
|
53 |
demo.queue(max_size=20)
|
54 |
+
atexit.register(lambda: log_file.unlink())
|
55 |
|
56 |
if __name__ == "__main__":
|
57 |
demo.launch()
|