Spaces:
Sleeping
Sleeping
File size: 8,291 Bytes
bcd2144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import time
import requests
import pandas as pd
from datetime import datetime
def extract_comment_data(comment, post_info):
return {
'subreddit': post_info['subreddit'],
'post_title': post_info['title'],
'post_score': post_info['score'],
'post_created_utc': post_info['created_utc'],
'comment_id': comment['data'].get('id'),
'comment_author': comment['data'].get('author'),
'comment_body': comment['data'].get('body'),
'comment_score': comment['data'].get('score', 0),
'comment_created_utc': datetime.fromtimestamp(comment['data'].get('created_utc', 0)),
'post_url': post_info['url'],
'comment_url': f"https://www.reddit.com{post_info['permalink']}{comment['data'].get('id')}",
}
def fetch_top_comments(post_df, num_comments=2):
all_comments = []
total_posts = len(post_df)
headers = {
'User-Agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 16_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.6 Mobile/15E148 Safari/604.1'
}
print(f"\nFetching top {num_comments} most upvoted comments for {total_posts} posts...")
for idx, post in post_df.iterrows():
print(f"\nProcessing post {idx + 1}/{total_posts}")
print(f"Title: {post['title'][:100]}...")
print(f"Post Score: {post['score']}, Number of Comments: {post['num_comments']}")
try:
json_url = post['permalink'].replace('https://www.reddit.com', '') + '.json'
url = f'https://www.reddit.com{json_url}'
response = requests.get(url, headers=headers)
response.raise_for_status()
data = response.json()
if len(data) > 1:
comments_data = data[1]['data']['children']
# Filter out non-comment entries and extract scores
valid_comments = [
comment for comment in comments_data
if comment['kind'] == 't1' and comment['data'].get('score') is not None
]
# Sort comments by score (upvotes) in descending order
sorted_comments = sorted(
valid_comments,
key=lambda x: x['data'].get('score', 0),
reverse=True
)
# Take only the top N comments
top_comments = sorted_comments[:num_comments]
# Print comment scores for verification
print("\nTop comment scores for this post:")
for i, comment in enumerate(top_comments, 1):
score = comment['data'].get('score', 0)
print(f"Comment {i}: {score} upvotes")
# Add to main list
for comment in top_comments:
all_comments.append(extract_comment_data(comment, post))
time.sleep(20)
except requests.exceptions.RequestException as e:
print(f"Error fetching comments for post {idx + 1}: {e}")
continue
# Create DataFrame and sort
comments_df = pd.DataFrame(all_comments)
if not comments_df.empty:
# Verify sorting by showing top comments for each post
print("\nVerification of comment sorting:")
for post_title in comments_df['post_title'].unique():
post_comments = comments_df[comments_df['post_title'] == post_title]
print(f"\nPost: {post_title[:100]}...")
print("Comment scores:", post_comments['comment_score'].tolist())
return comments_df
def fetch_subreddits(limit=10, min_subscribers=1000):
headers = {
'User-Agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 16_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.6 Mobile/15E148 Safari/604.1'
}
subreddits_data = []
after = None
while len(subreddits_data) < limit:
try:
url = f'https://www.reddit.com/subreddits/popular.json?limit=100'
if after:
url += f'&after={after}'
print(f"Fetching subreddits... Current count: {len(subreddits_data)}")
response = requests.get(url, headers=headers)
response.raise_for_status()
data = response.json()
for subreddit in data['data']['children']:
subreddit_data = subreddit['data']
if subreddit_data.get('subscribers', 0) >= min_subscribers:
sub_info = {
'display_name': subreddit_data.get('display_name'),
'display_name_prefixed': subreddit_data.get('display_name_prefixed'),
'title': subreddit_data.get('title'),
'subscribers': subreddit_data.get('subscribers', 0),
'active_users': subreddit_data.get('active_user_count', 0),
'created_utc': datetime.fromtimestamp(subreddit_data.get('created_utc', 0)),
'description': subreddit_data.get('description'),
'subreddit_type': subreddit_data.get('subreddit_type'),
'over18': subreddit_data.get('over18', False),
'url': f"https://www.reddit.com/r/{subreddit_data.get('display_name')}/"
}
subreddits_data.append(sub_info)
after = data['data'].get('after')
if not after:
print("Reached end of listings")
break
time.sleep(2)
except requests.exceptions.RequestException as e:
print(f"Error fetching data: {e}")
break
return pd.DataFrame(subreddits_data)
def fetch_top_posts(subreddit, limit=5):
posts_data = []
url = f'https://www.reddit.com/r/{subreddit}/top.json?t=all&limit={limit}'
headers = {
'User-Agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 16_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.6 Mobile/15E148 Safari/604.1'
}
try:
response = requests.get(url, headers=headers)
response.raise_for_status()
data = response.json()
for post in data['data']['children']:
post_data = post['data']
posts_data.append({
'subreddit': subreddit,
'title': post_data.get('title'),
'score': post_data.get('score'),
'num_comments': post_data.get('num_comments'),
'created_utc': datetime.fromtimestamp(post_data.get('created_utc', 0)),
'url': post_data.get('url'),
'permalink': 'https://www.reddit.com' + post_data.get('permalink', '')
})
time.sleep(2)
except requests.exceptions.RequestException as e:
print(f"Error fetching posts from r/{subreddit}: {e}")
return pd.DataFrame(posts_data)
def main():
# Step 1: Fetch Subreddits
print("Fetching subreddits...")
subreddits_df = fetch_subreddits(limit=10, min_subscribers=1000)
print(f"Fetched {len(subreddits_df)} subreddits.")
subreddits_df.to_csv("subreddits.csv")
# # Step 2: Fetch Top Posts for each subreddit
all_posts_data = []
for subreddit in subreddits_df['display_name']:
print(f"\nFetching top posts for subreddit: {subreddit}...")
posts_df = fetch_top_posts(subreddit, limit=5)
all_posts_data.append(posts_df)
# Combine all posts into a single DataFrame
posts_df = pd.concat(all_posts_data, ignore_index=True)
print(f"Fetched {len(posts_df)} top posts.")
posts_df.to_csv("posts.csv")
posts_df = pd.read_csv("posts.csv")
# Step 3: Fetch Top Comments for each post
all_comments_data = []
if not posts_df.empty:
all_comments_data = fetch_top_comments(posts_df, num_comments=2)
print(f"Fetched {len(all_comments_data)} top comments.")
all_comments_data.to_csv("comments.csv")
if __name__ == "__main__":
main() |