Spaces:
Sleeping
Sleeping
init
Browse files- app.py +134 -0
- predict.py +24 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from io import StringIO
|
3 |
+
import PyPDF4
|
4 |
+
import pdfplumber
|
5 |
+
import docx2txt
|
6 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
+
import difflib
|
9 |
+
from predict import run_prediction
|
10 |
+
|
11 |
+
# ========== CONFIG ==========
|
12 |
+
st.set_page_config(page_title="📑 Contract Analyzer", layout="wide")
|
13 |
+
|
14 |
+
# ========== FUNCTIONS ==========
|
15 |
+
def extract_text_from_pdf(uploaded_file):
|
16 |
+
try:
|
17 |
+
with pdfplumber.open(uploaded_file) as pdf:
|
18 |
+
return "\n".join(page.extract_text() or "" for page in pdf.pages)
|
19 |
+
except:
|
20 |
+
try:
|
21 |
+
reader = PyPDF4.PdfFileReader(uploaded_file)
|
22 |
+
return "\n".join([reader.getPage(i).extractText() for i in range(reader.numPages)])
|
23 |
+
except Exception as e:
|
24 |
+
st.error(f"Error reading PDF: {e}")
|
25 |
+
return ""
|
26 |
+
|
27 |
+
def load_text(file):
|
28 |
+
if not file:
|
29 |
+
return ""
|
30 |
+
try:
|
31 |
+
ext = file.name.split('.')[-1].lower()
|
32 |
+
if ext == 'txt':
|
33 |
+
return StringIO(file.getvalue().decode("utf-8")).read()
|
34 |
+
elif ext == 'pdf':
|
35 |
+
return extract_text_from_pdf(file)
|
36 |
+
elif ext == 'docx':
|
37 |
+
return docx2txt.process(file)
|
38 |
+
else:
|
39 |
+
st.warning(f"Unsupported file type: {ext}")
|
40 |
+
return ""
|
41 |
+
except Exception as e:
|
42 |
+
st.error(f"Error loading file: {e}")
|
43 |
+
return ""
|
44 |
+
|
45 |
+
def highlight_diff(text1, text2):
|
46 |
+
differ = difflib.Differ()
|
47 |
+
diff = differ.compare(text1.split(), text2.split())
|
48 |
+
html = ""
|
49 |
+
for word in diff:
|
50 |
+
if word.startswith("- "):
|
51 |
+
html += f'<span style="background-color:#ffcccc">{word[2:]}</span> '
|
52 |
+
elif word.startswith("+ "):
|
53 |
+
html += f'<span style="background-color:#ccffcc">{word[2:]}</span> '
|
54 |
+
else:
|
55 |
+
html += word[2:] + " "
|
56 |
+
return html
|
57 |
+
|
58 |
+
def compute_similarity(text1, text2):
|
59 |
+
if not text1.strip() or not text2.strip():
|
60 |
+
return 0.0
|
61 |
+
try:
|
62 |
+
tfidf = TfidfVectorizer(token_pattern=r'(?u)\b\w+\b')
|
63 |
+
tfidf_matrix = tfidf.fit_transform([text1, text2])
|
64 |
+
sim = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])
|
65 |
+
return sim[0][0] * 100
|
66 |
+
except:
|
67 |
+
return difflib.SequenceMatcher(None, text1, text2).ratio() * 100
|
68 |
+
|
69 |
+
# ========== MAIN ==========
|
70 |
+
def main():
|
71 |
+
st.title("📑 Contract Analyzer")
|
72 |
+
st.markdown("Upload two contracts, compare them, and ask any question!")
|
73 |
+
|
74 |
+
# Upload documents
|
75 |
+
st.header("1. Upload Documents")
|
76 |
+
col1, col2 = st.columns(2)
|
77 |
+
with col1:
|
78 |
+
file1 = st.file_uploader("Upload First Document", type=["txt", "pdf", "docx"], key="file1")
|
79 |
+
with col2:
|
80 |
+
file2 = st.file_uploader("Upload Second Document", type=["txt", "pdf", "docx"], key="file2")
|
81 |
+
|
82 |
+
text1, text2 = "", ""
|
83 |
+
if file1: text1 = load_text(file1)
|
84 |
+
if file2: text2 = load_text(file2)
|
85 |
+
|
86 |
+
if not (text1 and text2):
|
87 |
+
st.warning("Please upload both documents to continue.")
|
88 |
+
return
|
89 |
+
|
90 |
+
# Display uploaded texts
|
91 |
+
st.header("2. Documents Content")
|
92 |
+
col1, col2 = st.columns(2)
|
93 |
+
with col1:
|
94 |
+
st.subheader("First Document")
|
95 |
+
st.text_area("Content of first document:", text1, height=300)
|
96 |
+
with col2:
|
97 |
+
st.subheader("Second Document")
|
98 |
+
st.text_area("Content of second document:", text2, height=300)
|
99 |
+
|
100 |
+
# Compare documents
|
101 |
+
st.header("3. Compare Documents")
|
102 |
+
if st.button("Compare Documents"):
|
103 |
+
sim_score = compute_similarity(text1, text2)
|
104 |
+
st.metric("Similarity Score", f"{sim_score:.2f}%")
|
105 |
+
diff_html = highlight_diff(text1, text2)
|
106 |
+
st.markdown("**Differences Highlighted:**", unsafe_allow_html=True)
|
107 |
+
st.markdown(f"<div style='border:1px solid #ccc; padding:10px; max-height:400px; overflow:auto'>{diff_html}</div>", unsafe_allow_html=True)
|
108 |
+
|
109 |
+
# Ask any question
|
110 |
+
st.header("4. Ask a Question")
|
111 |
+
user_question = st.text_input("Enter your question about the contracts:")
|
112 |
+
|
113 |
+
if user_question and st.button("Analyze Question"):
|
114 |
+
col1, col2 = st.columns(2)
|
115 |
+
with col1:
|
116 |
+
st.subheader("Answer from Document 1")
|
117 |
+
with st.spinner("Analyzing..."):
|
118 |
+
try:
|
119 |
+
pred1 = run_prediction([user_question], text1, model_name='marshmellow77/roberta-base-cuad', n_best_size=5)
|
120 |
+
st.success(pred1.get('0', 'No answer found'))
|
121 |
+
except Exception as e:
|
122 |
+
st.error(f"Failed on Document 1: {e}")
|
123 |
+
|
124 |
+
with col2:
|
125 |
+
st.subheader("Answer from Document 2")
|
126 |
+
with st.spinner("Analyzing..."):
|
127 |
+
try:
|
128 |
+
pred2 = run_prediction([user_question], text2, model_name='marshmellow77/roberta-base-cuad', n_best_size=5)
|
129 |
+
st.success(pred2.get('0', 'No answer found'))
|
130 |
+
except Exception as e:
|
131 |
+
st.error(f"Failed on Document 2: {e}")
|
132 |
+
|
133 |
+
if __name__ == "__main__":
|
134 |
+
main()
|
predict.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
|
3 |
+
# Tải model sẵn để khỏi load nhiều lần
|
4 |
+
qa_pipeline = pipeline(
|
5 |
+
"question-answering",
|
6 |
+
model="marshmellow77/roberta-base-cuad",
|
7 |
+
tokenizer="marshmellow77/roberta-base-cuad"
|
8 |
+
)
|
9 |
+
|
10 |
+
def run_prediction(questions, context, model_name=None, n_best_size=5):
|
11 |
+
"""
|
12 |
+
- questions: list các câu hỏi (ví dụ ['What is the payment term?'])
|
13 |
+
- context: đoạn văn bản (hợp đồng) để tìm câu trả lời
|
14 |
+
- model_name: không cần, để giữ nguyên cho tương thích
|
15 |
+
- n_best_size: không cần, giữ nguyên để gọi
|
16 |
+
"""
|
17 |
+
answers = {}
|
18 |
+
for idx, question in enumerate(questions):
|
19 |
+
result = qa_pipeline({
|
20 |
+
'context': context,
|
21 |
+
'question': question
|
22 |
+
})
|
23 |
+
answers[str(idx)] = result['answer']
|
24 |
+
return answers
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
scikit-learn
|
3 |
+
pdfplumber
|
4 |
+
PyPDF4
|
5 |
+
docx2txt
|
6 |
+
transformers
|
7 |
+
torch
|