Spaces:
Running
Running
Commit
·
fb2eca4
1
Parent(s):
12883ff
start teste
Browse files- Dockerfile +11 -0
- main.py +50 -0
- requirements.txt +7 -0
Dockerfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM tiangolo/uvicorn-gunicorn-fastapi:python3.9
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
COPY requirements.txt .
|
6 |
+
|
7 |
+
RUN pip install -r requirements.txt
|
8 |
+
|
9 |
+
COPY . .
|
10 |
+
|
11 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "80"]
|
main.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import time
|
3 |
+
from typing import List, Literal
|
4 |
+
from fastapi import FastAPI
|
5 |
+
from pydantic import BaseModel
|
6 |
+
from enum import Enum
|
7 |
+
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
|
8 |
+
import torch
|
9 |
+
|
10 |
+
app = FastAPI()
|
11 |
+
device = torch.device("cpu")
|
12 |
+
|
13 |
+
|
14 |
+
class TranslationRequest(BaseModel):
|
15 |
+
user_input: str
|
16 |
+
source_lang: str
|
17 |
+
target_lang: str
|
18 |
+
|
19 |
+
|
20 |
+
def load_model(pretrained_model: str = "facebook/m2m100_1.2B", cache_dir: str = "models/"):
|
21 |
+
tokenizer = M2M100Tokenizer.from_pretrained(pretrained_model, cache_dir=cache_dir)
|
22 |
+
model = M2M100ForConditionalGeneration.from_pretrained(pretrained_model, cache_dir=cache_dir).to(device)
|
23 |
+
model.eval()
|
24 |
+
return tokenizer, model
|
25 |
+
|
26 |
+
|
27 |
+
@app.post("/translate")
|
28 |
+
async def translate(request: TranslationRequest):
|
29 |
+
time_start = time.time()
|
30 |
+
tokenizer, model = load_model()
|
31 |
+
src_lang = request.source_lang
|
32 |
+
trg_lang = request.target_lang
|
33 |
+
tokenizer.src_lang = src_lang
|
34 |
+
with torch.no_grad():
|
35 |
+
encoded_input = tokenizer(request.user_input, return_tensors="pt").to(device)
|
36 |
+
generated_tokens = model.generate(
|
37 |
+
**encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang)
|
38 |
+
)
|
39 |
+
translated_text = tokenizer.batch_decode(
|
40 |
+
generated_tokens, skip_special_tokens=True
|
41 |
+
)[0]
|
42 |
+
time_end = time.time()
|
43 |
+
response = {"translation": translated_text, "computation_time": round((time_end - time_start), 3)}
|
44 |
+
return response
|
45 |
+
|
46 |
+
|
47 |
+
if __name__ == "__main__":
|
48 |
+
import uvicorn
|
49 |
+
|
50 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wheel
|
2 |
+
fastapi[all]
|
3 |
+
gunicorn
|
4 |
+
streamlit
|
5 |
+
torch
|
6 |
+
transformers
|
7 |
+
transformers[sentencepiece]
|