Spaces:
Running
on
Zero
Running
on
Zero
import copy | |
import math | |
import os | |
import time | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend | |
from docling.datamodel.pipeline_options import PdfPipelineOptions | |
from docling.document_converter import DocumentConverter, InputFormat, PdfFormatOption | |
from langchain.schema.document import Document | |
from langchain_chroma import Chroma | |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings | |
from langchain_docling import DoclingLoader | |
from langchain_docling.loader import ExportType | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from transformers import AutoModelForCausalLM, AutoTokenizer, DynamicCache, TextIteratorStreamer | |
from transformers.models.llama.modeling_llama import rotate_half | |
import uuid | |
from utils import ( | |
calculate_tokens_suggest_compression_ratio, | |
repeat_kv, | |
update_retrieval_context, | |
) | |
# Initialize the model and tokenizer. | |
api_token = os.getenv("HUGGING_FACE_HUB_TOKEN") | |
model_name = "meta-llama/Llama-3.1-8B-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, token=api_token) | |
model = AutoModelForCausalLM.from_pretrained(model_name, token=api_token, torch_dtype=torch.float16) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.eval() | |
model.to(device) | |
embedding_model = HuggingFaceBgeEmbeddings( | |
model_name="BAAI/bge-large-en-v1.5", | |
model_kwargs={"device": str(device)}, | |
encode_kwargs={"normalize_embeddings": True}, | |
query_instruction="" | |
) | |
# Create a chat template and split into prefix and suffix. | |
content_system = "" | |
content_user = "######" | |
user_template = [ | |
{"role": "system", "content": content_system}, | |
{"role": "user", "content": content_user} | |
] | |
user = tokenizer.apply_chat_template(user_template, add_generation_prompt=True, tokenize=False) | |
prefix, suffix = user.split(content_user) | |
sink_tokens = max(4, len(tokenizer.encode(prefix))) | |
# Default prompt content. | |
default_task_description = ( | |
"Answer the question based on the given passages. " | |
"Only give me the answer and do not output any other words." | |
) | |
default_few_shot = """Examples | |
question: Which case was brought to court first Miller v. California or Gates v. Collier ? | |
answer: Miller v. California | |
question: The actor that plays Phileas Fogg in "Around the World in 80 Days", co-starred with Gary Cooper in a 1939 Goldwyn Productions film based on a novel by what author? | |
answer: Charles L. Clifford | |
question: Prior to playing for Michigan State, Keith Nichol played football for a school located in what city? | |
answer: Norman | |
""" | |
class FinchCache(DynamicCache): | |
def __init__(self) -> None: | |
super().__init__() | |
self.key_cache = [] | |
self.value_cache = [] | |
def _rotate_half(x): | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
def _apply_key_rotary_pos_emb(self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor: | |
return (key_states * cos) + (self._rotate_half(key_states) * sin) | |
def _rerotate_cos_sin(x, inv_freq, important_pos_batch): | |
B, H, L = important_pos_batch.shape | |
device = important_pos_batch.device | |
device_type = x.device.type | |
dtype = x.dtype | |
idx = torch.arange(0, L, device=device) | |
idx = idx.unsqueeze(0) | |
inv_freq = inv_freq[None, None, :, None].float().expand(B, H, -1, 1) # (B, H, M, 1) | |
idx = idx[:, None, :].float().expand(B, H, L) # (B, H, L) | |
delta_pos = idx - important_pos_batch | |
delta_pos = delta_pos.unsqueeze(2) # (B, H, 1, L) | |
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | |
with torch.autocast(device_type=device_type, enabled=False): | |
freqs = delta_pos.float() * inv_freq.float() | |
freqs = freqs.transpose(2, 3) | |
emb = torch.cat((freqs, freqs), dim=-1) | |
cos = emb.cos().contiguous() | |
sin = emb.sin().contiguous() | |
return cos.to(dtype=dtype), sin.to(dtype=dtype) | |
def gather_important_tokens(states, indices): | |
return torch.gather(states, 2, indices.unsqueeze(-1).expand(-1, -1, -1, states.size(3))).contiguous() | |
def compress_cache(self, layer_index, important_pos, inv_freq): | |
new_length = important_pos.size(2) | |
new_cos, new_sin = self._rerotate_cos_sin(self.key_cache[layer_index], inv_freq, important_pos) | |
gathered_keys = self.gather_important_tokens(self.key_cache[layer_index], important_pos).clone() | |
self.key_cache[layer_index] = self._apply_key_rotary_pos_emb(gathered_keys, new_cos, new_sin) | |
gathered_values = self.gather_important_tokens(self.value_cache[layer_index], important_pos).clone() | |
self.value_cache[layer_index] = gathered_values | |
self._seen_tokens = new_length | |
def save(self, path: str): | |
"""Save the cache to disk, moving tensors to CPU.""" | |
try: | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
torch.save( | |
{"key_cache": [k.cpu() for k in self.key_cache], "value_cache": [v.cpu() for v in self.value_cache]}, | |
path, | |
) | |
except Exception as e: | |
print(f"Error occurred while saving: {e}") | |
def load(cls, path: str, device: str = "cpu") -> "FinchCache": | |
"""Load the cache from disk and move tensors to the specified device.""" | |
data = torch.load(path, map_location=device) | |
cache = cls() | |
cache.key_cache = [k.to(device) for k in data["key_cache"]] | |
cache.value_cache = [v.to(device) for v in data["value_cache"]] | |
cache._seen_tokens = cache.value_cache[0].size(2) if cache.value_cache else 0 | |
return cache | |
def convert_to_markdown(file_objs, url, do_ocr, do_table_structure): | |
file_path = file_objs if file_objs is not None else url | |
pipeline_options = PdfPipelineOptions() | |
pipeline_options.do_ocr = do_ocr | |
pipeline_options.do_table_structure = do_table_structure | |
pdf_format_options = PdfFormatOption( | |
pipeline_options=pipeline_options, | |
backend=PyPdfiumDocumentBackend, | |
) | |
doc_converter = DocumentConverter( | |
allowed_formats=[InputFormat.PDF], | |
format_options={ | |
InputFormat.PDF: pdf_format_options | |
} | |
) | |
# Pass the custom converter to the DoclingLoader. | |
loader = DoclingLoader( | |
file_path=file_path, | |
export_type=ExportType.MARKDOWN, | |
converter=doc_converter | |
) | |
docs = loader.load() | |
return docs[0].page_content | |
def create_rag_index(collection_name, text_no_prefix): | |
"""Loads the PDF, splits its text, and builds a vectorstore for naive RAG.""" | |
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer( | |
tokenizer, | |
chunk_size=256, | |
chunk_overlap=0, | |
add_start_index=True, | |
strip_whitespace=True, | |
separators=["\n\n", "\n", ".", " ", ""], | |
) | |
# Concatenate pages and create Document objects. | |
docs = [Document(page_content=x) for x in text_splitter.split_text(text_no_prefix)] | |
vectorstore = Chroma.from_documents(collection_name=collection_name, persist_directory="./chroma_db", documents=docs, embedding=embedding_model) | |
return vectorstore | |
def auto_convert(file_objs, url, do_ocr, do_table_structure): | |
if file_objs is None and (url is None or url.strip() == ""): | |
return ( | |
gr.update(value=""), | |
"Number of tokens before compression: ", | |
gr.update(), | |
"Number of tokens after compression: ", | |
0, | |
gr.update(interactive=False), # Disable compress button when no input. | |
False, | |
{} # return an empty state dictionary | |
) | |
# Convert the document to markdown. | |
print("Converting to markdown") | |
markdown = convert_to_markdown(file_objs, url, do_ocr, do_table_structure) | |
print("Done") | |
combined_text = prefix + markdown | |
print("Suggestioning Compression ratio") | |
token_count, suggestions, _ = calculate_tokens_suggest_compression_ratio(combined_text, tokenizer, model) | |
print("Done") | |
min_ratio = min(suggestions) | |
max_ratio = max(suggestions) | |
default_ratio = suggestions[len(suggestions) // 2] | |
retrieval_tokens = int(token_count / default_ratio) | |
token_count_str = f"Number of tokens before compression: {token_count}" | |
retrieval_str = f"Number of tokens after compression: {retrieval_tokens}" | |
slider_update = gr.update(value=default_ratio, minimum=min_ratio, maximum=max_ratio, step=1) | |
# Create the RAG index immediately. | |
if combined_text.startswith(prefix): | |
rag_text = combined_text[len(prefix):] | |
else: | |
rag_text = combined_text | |
collection_name = "default_collection_" + uuid.uuid4().hex[:6] | |
rag_index = create_rag_index(collection_name, rag_text) | |
state = {"rag_index": collection_name} | |
print("Done") | |
return ( | |
combined_text, | |
token_count_str, | |
slider_update, | |
retrieval_str, | |
token_count, | |
gr.update(interactive=True), | |
False, | |
state | |
) | |
def get_compressed_kv_cache(sink_tokens, step_size, target_token_size, context_ids, context_attention_mask, question_ids, question_attention_mask): | |
device = model.device | |
dtype = model.dtype | |
sink_tokens = sink_tokens | |
num_chunks = step_size | |
context_ids = context_ids.to(device) | |
context_attention_mask = context_attention_mask.to(device) | |
question_ids = question_ids.to(device) | |
question_attention_mask = question_attention_mask.to(device) | |
question_len = question_ids.size(1) | |
total_len = context_ids.size(1) | |
max_context_tokens_allowed = model.config.max_position_embeddings - question_len | |
if total_len > max_context_tokens_allowed: | |
num_chunks = max(step_size, math.ceil(total_len / max_context_tokens_allowed)) | |
if total_len <= sink_tokens or num_chunks == 1: | |
# If the context is too short or only one chunk is desired, use the entire context. | |
context_ids_list = [context_ids] | |
context_attention_mask_list = [context_attention_mask] | |
else: | |
# Calculate how many tokens remain after the sink tokens. | |
remainder_len = total_len - sink_tokens | |
# Compute the base tokens per chunk and any leftover. | |
base = remainder_len // num_chunks | |
leftover = remainder_len % num_chunks | |
# Build a list of chunk sizes. | |
# First chunk gets the sink tokens plus base tokens. | |
chunk_sizes = [sink_tokens + base] | |
# Chunks 2 to num_chunks-1 get base tokens each. | |
for _ in range(num_chunks - 2): | |
chunk_sizes.append(base) | |
# The last chunk gets the remaining tokens (base + leftover). | |
if num_chunks > 1: | |
chunk_sizes.append(base + leftover) | |
# Now slice the context using the calculated sizes. | |
context_ids_list = [] | |
context_attention_mask_list = [] | |
offset = 0 | |
for size in chunk_sizes: | |
end = offset + size | |
context_ids_list.append(context_ids[:, offset:end]) | |
context_attention_mask_list.append(context_attention_mask[:, offset:end]) | |
offset = end | |
# (Optional) Continue with the rest of your processing… | |
len_rest = max(total_len - sink_tokens, 1) | |
compression_factor = len_rest // target_token_size | |
if compression_factor < 1: | |
compression_factor = 1 | |
tokenized_doc_chunks = [] | |
for ids_chunk, mask_chunk in zip(context_ids_list, context_attention_mask_list): | |
tokenized_doc_chunks.append({"input_ids": ids_chunk, "attention_mask": mask_chunk}) | |
print("Number of chunks: ", len(tokenized_doc_chunks)) | |
rotary_emb = model.model.rotary_emb.to(device) | |
inv_freq = rotary_emb.inv_freq | |
batch_size = question_ids.size(0) | |
ones_mask = torch.ones(batch_size, 1, dtype=question_attention_mask.dtype, device=device) | |
cache = FinchCache() | |
past_cache_len = 0 | |
past_attention_mask = torch.zeros(batch_size, 0, dtype=question_attention_mask.dtype, device=device) | |
num_chunks = len(tokenized_doc_chunks) | |
# Prepare a shared dictionary for hook outputs. | |
query_context_matrices = {} | |
# Define a hook function that uses a per-chunk offset stored on self. | |
def query_hook_fn(module, input, output): | |
layer_idx = getattr(module, "layer_idx", None) | |
if layer_idx is not None: | |
query_states = output.detach() | |
bsz, seq_len, hidden_dim = query_states.size() | |
num_query_heads = module.num_query_heads | |
head_dim = hidden_dim // num_query_heads | |
query_states = ( | |
query_states.view(bsz, seq_len, num_query_heads, head_dim) | |
.transpose(1, 2) | |
.contiguous() | |
) | |
# Use self._current_chunk_offset to select only the new tokens. | |
query_context_matrices[layer_idx] = query_states[:, :, _current_chunk_offset:, :].clone() | |
# Pre-register hooks for all layers only once. | |
hooks = [] | |
for i, layer in enumerate(model.model.layers): | |
layer.self_attn.q_proj.layer_idx = i # For tracking. | |
layer.self_attn.q_proj.num_query_heads = layer.self_attn.config.num_attention_heads | |
hook = layer.self_attn.q_proj.register_forward_hook(query_hook_fn) | |
hooks.append(hook) | |
# Process each document chunk sequentially. | |
for j, tokenized_doc_chunk in enumerate(tokenized_doc_chunks): | |
current_seq_length = tokenized_doc_chunk["input_ids"].size(1) | |
# Save the offset in an attribute the hook can access. | |
_current_chunk_offset = current_seq_length | |
# Clear the dictionary from any previous chunk. | |
query_context_matrices.clear() | |
# These chunks are already on the device. | |
chunk_input_ids = tokenized_doc_chunk["input_ids"].contiguous() | |
chunk_attention_mask = tokenized_doc_chunk["attention_mask"].contiguous() | |
segment_attention_mask = torch.cat( | |
[past_attention_mask, chunk_attention_mask, ones_mask], dim=-1 | |
).contiguous() | |
current_input_ids = torch.cat([chunk_input_ids, question_ids], dim=-1).contiguous() | |
current_attention_mask = torch.cat([segment_attention_mask, question_attention_mask], dim=-1).contiguous() | |
past_seen_tokens = cache.get_seq_length() if cache is not None else 0 | |
cache_position = torch.arange( | |
past_seen_tokens + chunk_input_ids.shape[1], | |
past_seen_tokens + current_input_ids.shape[1], | |
device=device | |
) | |
causal_mask = model.model._prepare_4d_causal_attention_mask_with_cache_position( | |
current_attention_mask, | |
sequence_length=question_ids.size(1), | |
target_length=current_attention_mask.size(-1), | |
dtype=dtype, | |
device=device, | |
cache_position=cache_position, | |
batch_size=current_input_ids.size(0), | |
).contiguous() | |
with torch.no_grad(): | |
outputs = model.model( | |
input_ids=current_input_ids, | |
use_cache=True, | |
past_key_values=cache, | |
) | |
cache = outputs.past_key_values | |
len_question = question_ids.size(1) | |
# Now, for each transformer layer, update the cache using the query/key attention. | |
for layer_idx in range(len(model.model.layers)): | |
key_matrix = cache.key_cache[layer_idx] | |
query_matrix = query_context_matrices[layer_idx] | |
layer_cache_pos = torch.arange( | |
past_cache_len + current_seq_length, | |
past_cache_len + current_seq_length + len_question, | |
device=device | |
) | |
position_ids = layer_cache_pos.unsqueeze(0) | |
cos, sin = rotary_emb(query_matrix, position_ids) | |
cos = cos.unsqueeze(1) | |
sin = sin.unsqueeze(1) | |
query_matrix = (query_matrix * cos) + (rotate_half(query_matrix) * sin) | |
num_repeats = model.config.num_attention_heads // model.config.num_key_value_heads | |
key_matrix = repeat_kv(key_matrix, num_repeats) | |
scaling = math.sqrt(model.config.head_dim) | |
attention_matrix = torch.matmul(query_matrix, key_matrix.transpose(2, 3)) / scaling | |
causal_mask_sliced = causal_mask[:, :, :, : key_matrix.shape[-2]] | |
attention_matrix = attention_matrix + causal_mask_sliced | |
attention_matrix = torch.nn.functional.softmax(attention_matrix, dim=-1, dtype=torch.float32).to(query_matrix.dtype) | |
# Normalization | |
tol = 1e-8 | |
binary_mask = (torch.abs(causal_mask_sliced.to(torch.float32)) < tol).to(torch.float32) | |
non_zero_counts = binary_mask.sum(dim=3, keepdim=True) | |
non_zero_counts = torch.clamp_min(non_zero_counts, 1.0).to(attention_matrix.dtype) | |
attention_matrix = attention_matrix / non_zero_counts | |
if j != num_chunks - 1: | |
attention_matrix = attention_matrix[:, :, :, : past_cache_len + current_seq_length].clone().contiguous() | |
else: | |
attention_matrix = attention_matrix[:, :, :, : past_cache_len + current_seq_length + len_question].clone().contiguous() | |
attention_matrix = torch.sum(attention_matrix, dim=-2) | |
attention_matrix = attention_matrix.view( | |
attention_matrix.size(0), model.config.num_key_value_heads, num_repeats, -1 | |
).sum(dim=2) | |
full_context_size = attention_matrix.size(-1) | |
attention_matrix[..., :sink_tokens] = float("inf") | |
if j == num_chunks - 1: | |
attention_matrix[..., -len_question:] = float("inf") | |
if j == 0: | |
k = int(sink_tokens + (max(0, current_seq_length - sink_tokens) // compression_factor)) | |
k = min(k + past_cache_len, full_context_size) | |
elif j < num_chunks - 1: | |
to_keep_new = int(current_seq_length // compression_factor) | |
k = min(past_cache_len + to_keep_new, full_context_size) | |
else: | |
desired_final = sink_tokens + target_token_size + len_question# TODO remember to include the question tokens | |
k = desired_final if full_context_size >= desired_final else full_context_size | |
k = max(k, sink_tokens) | |
selected_indices = torch.topk(attention_matrix, k, dim=-1).indices | |
selected_indices, _ = torch.sort(selected_indices, dim=-1) | |
cache.compress_cache(layer_idx, selected_indices, inv_freq) | |
past_cache_len = cache._seen_tokens | |
past_attention_mask = torch.ones(1, past_cache_len, device=device) | |
# Remove the hooks once after all chunks are processed. | |
for hook in hooks: | |
hook.remove() | |
return cache | |
def run_naive_rag_query(collection_name, query, rag_token_size, prefix, task, few_shot_examples): | |
""" | |
For naive RAG, retrieves top-k chunks (k based on target token size) | |
and generates an answer using those chunks. | |
""" | |
k = max(1, rag_token_size // 256) | |
vectorstore = Chroma(persist_directory="./chroma_db", embedding=embedding_model, collection_name=collection_name) | |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": k}) | |
retrieved_docs = retriever.invoke(query) | |
for doc in retrieved_docs: | |
print("=================") | |
print(doc.page_content) | |
print("=================") | |
formatted_context = "\n\n".join([doc.page_content for doc in retrieved_docs]) | |
rag_context = prefix + "Retrieved context: \n" + formatted_context + task + few_shot_examples | |
return rag_context | |
def prepare_compression_and_rag(combined_text, retrieval_slider_value, global_local_value, task_description, few_shot, state): | |
""" | |
Prepares the compressed KV cache. Uses the precomputed rag_index from state. | |
""" | |
percentage = int(global_local_value.replace('%', '')) | |
question_text = task_description + "\n" + few_shot | |
context_encoding = tokenizer(combined_text, return_tensors="pt").to(device) | |
question_encoding = tokenizer(question_text, return_tensors="pt").to(device) | |
context_ids = context_encoding["input_ids"] | |
context_attention_mask = context_encoding["attention_mask"] | |
question_ids = question_encoding["input_ids"] | |
question_attention_mask = question_encoding["attention_mask"] | |
retrieval_context_length = int(context_ids.size(1) / retrieval_slider_value) | |
if percentage > 0: | |
target_token_size = int(retrieval_context_length * (percentage / 100)) | |
print("Target token size for compression: ", target_token_size) | |
step_size = 2 | |
start_time_prefill = time.perf_counter() | |
past_key_values = copy.deepcopy(get_compressed_kv_cache(sink_tokens, step_size, target_token_size, | |
context_ids, context_attention_mask, | |
question_ids, question_attention_mask)) | |
compressed_length = past_key_values.get_seq_length() | |
print("Context size after compression: ", compressed_length) | |
print("Compression rate: ", context_ids.size(1) / compressed_length) | |
else: | |
start_time_prefill = 0 | |
target_token_size = 0 | |
past_key_values = FinchCache() | |
compressed_length = past_key_values.get_seq_length() | |
cache_name = "default_cache_" + uuid.uuid4().hex[:6] | |
cache_name = "default_cache_" + uuid.uuid4().hex[:6] + ".pt" | |
save_dir = "./cache_dir" | |
os.makedirs(save_dir, exist_ok=True) | |
save_path = os.path.join(save_dir, cache_name) | |
past_key_values.save(save_path) | |
# Use the precomputed rag_index from state. | |
collection_name = state.get("rag_index", None) | |
if collection_name is None: | |
print("Collection name not found creating a new one.") | |
if combined_text.startswith(prefix): | |
rag_text = combined_text[len(prefix):] | |
else: | |
rag_text = combined_text | |
collection_name = "default_collection_" + uuid.uuid4().hex[:6] | |
rag_index = create_rag_index(collection_name, rag_text) | |
state.update({ | |
"compressed_cache": save_path, | |
"compressed_length": compressed_length, | |
"rag_index": collection_name, | |
"target_token_size": target_token_size, | |
"global_local": percentage, | |
"combined_text": combined_text, | |
"task_description": task_description, | |
"few_shot": few_shot, | |
"retrieval_slider": retrieval_context_length, | |
"prefill_time": time.perf_counter() - start_time_prefill | |
}) | |
return state, True | |
def chat_response_stream(message: str, history: list, state: dict): | |
""" | |
Generates a chat response with streaming output. | |
Returns a simple string (not a list of message dicts) for ChatInterface. | |
""" | |
user_message = message | |
save_path = state["compressed_cache"] | |
past_key_values = FinchCache.load(save_path, device=model.device) | |
try: | |
os.remove(save_path) | |
except Exception as e: | |
print(f"Error removing cache file: {e}") | |
compressed_length = past_key_values.get_seq_length() | |
collection_name = state["rag_index"] | |
retrieval_slider_value = state["retrieval_slider"] | |
percentage = state["global_local"] | |
rag_retrieval_size = int(retrieval_slider_value * (1.0 - (percentage / 100))) | |
print("RAG retrieval size: ", rag_retrieval_size) | |
if percentage == 0: | |
rag_prefix = prefix | |
rag_task = state["task_description"] | |
rag_few_shot = state["few_shot"] | |
else: | |
rag_prefix = "" | |
rag_task = "" | |
rag_few_shot = "" | |
print("user message: ", user_message) | |
if rag_retrieval_size != 0: | |
print("Running RAG query") | |
rag_context = run_naive_rag_query(collection_name, user_message, rag_retrieval_size, rag_prefix, rag_task, rag_few_shot) | |
new_input = rag_context + "\nquestion: " + user_message + suffix + "answer:" | |
else: | |
new_input = "\nquestion: " + user_message + suffix + "answer:" | |
tokenized_new_input = tokenizer(new_input, return_tensors="pt").to(device) | |
eos_block = torch.full((1, compressed_length), tokenizer.eos_token_id, device=device, dtype=torch.long) | |
new_input_ids = torch.cat([eos_block, tokenized_new_input["input_ids"]], dim=-1) | |
new_attention_mask = torch.cat([torch.ones((1, compressed_length), device=device), tokenized_new_input["attention_mask"]], dim=-1) | |
print("New input is: ", new_input) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=new_input_ids, | |
attention_mask=new_attention_mask, | |
past_key_values=past_key_values, | |
streamer=streamer, | |
use_cache=True, | |
max_new_tokens=1024, | |
num_beams=1, | |
do_sample=False, | |
temperature=1.0, | |
top_p=1.0, | |
top_k=None, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
full_output = "" | |
for text in streamer: | |
full_output += text | |
time.sleep(0.05) | |
yield full_output | |
state["compressed_cache"] = past_key_values | |
return full_output | |
########################################################################## | |
# Gradio Interface: note that we now use ChatInterface instead of a Chatbot. | |
########################################################################## | |
CSS = """ | |
body { | |
font-family: "Times New Roman", Times, serif; | |
} | |
.upload-section { | |
padding: 10px; | |
border: 2px dashed #ccc; | |
border-radius: 10px; | |
} | |
.upload-button { | |
background: #34c759 !important; | |
color: white !important; | |
border-radius: 25px !important; | |
} | |
.chatbot-container { | |
margin-top: 20px; | |
} | |
.status-output { | |
margin-top: 10px; | |
font-size: 14px; | |
} | |
.processing-info { | |
margin-top: 5px; | |
font-size: 12px; | |
color: #666; | |
} | |
.info-container { | |
margin-top: 10px; | |
padding: 10px; | |
border-radius: 5px; | |
} | |
.file-list { | |
margin-top: 0; | |
max-height: 200px; | |
overflow-y: auto; | |
padding: 5px; | |
border: 1px solid #eee; | |
border-radius: 5px; | |
} | |
.stats-box { | |
margin-top: 10px; | |
padding: 10px; | |
border-radius: 5px; | |
font-size: 12px; | |
} | |
.submit-btn { | |
background: #1a73e8 !important; | |
color: white !important; | |
border-radius: 25px !important; | |
margin-left: 10px; | |
padding: 5px 10px; | |
font-size: 16px; | |
} | |
.input-row { | |
display: flex; | |
align-items: center; | |
} | |
@media (min-width: 768px) { | |
.main-container { | |
display: flex; | |
justify-content: space-between; | |
gap: 20px; | |
} | |
.upload-section { | |
flex: 3; | |
} | |
.chatbot-container { | |
flex: 1; | |
margin-top: 0; | |
} | |
} | |
""" | |
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo: | |
gr.HTML("<h1><center>Beyond RAG with LLama 3.1-8B-Instruct Model</center></h1>") | |
gr.HTML("<center><p>Compress your document and chat with it.</p></center>") | |
hidden_token_count = gr.State(value=0) | |
compression_done = gr.State(value=False) | |
compressed_doc_state = gr.State(value={}) | |
with gr.Row(elem_classes="main-container"): | |
with gr.Column(elem_classes="upload-section"): | |
gr.Markdown("## Document Preprocessing") | |
with gr.Row(): | |
file_input = gr.File(label="Drop file here or upload", file_count="multiple", elem_id="file-upload-area") | |
url_input = gr.Textbox(label="or enter a URL", placeholder="https://example.com/document.pdf") | |
with gr.Row(): | |
do_ocr = gr.Checkbox(label="Do OCR", value=False) | |
do_table = gr.Checkbox(label="Include Table Structure", value=False) | |
with gr.Accordion("Prompt Designer", open=False): | |
task_description_input = gr.Textbox(label="Task Description", value=default_task_description, lines=3, elem_id="task-description") | |
few_shot_input = gr.Textbox(label="Few-Shot Examples", value=default_few_shot, lines=10, elem_id="few-shot") | |
with gr.Accordion("Show Markdown Output", open=False): | |
markdown_output = gr.Textbox(label="Markdown Output", lines=20) | |
token_count_text = gr.Markdown("Number of tokens before compression: ") | |
retrieval_slider = gr.Slider(label="Select Compression Rate", minimum=1, maximum=32, step=1, value=2) | |
retrieval_info_text = gr.Markdown("Number of tokens after compression: ") | |
global_local_slider = gr.Radio(label="Global vs Local (0 is all RAG, 100 is all global)", | |
choices=["0%", "25%", "50%", "75%", "100%"], value="75%") | |
compress_button = gr.Button("Compress Document", interactive=False, elem_classes="upload-button") | |
file_input.change( | |
fn=auto_convert, | |
inputs=[file_input, url_input, do_ocr, do_table], | |
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state] | |
) | |
url_input.change( | |
fn=auto_convert, | |
inputs=[file_input, url_input, do_ocr, do_table], | |
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state] | |
) | |
do_ocr.change( | |
fn=auto_convert, | |
inputs=[file_input, url_input, do_ocr, do_table], | |
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state] | |
) | |
do_table.change( | |
fn=auto_convert, | |
inputs=[file_input, url_input, do_ocr, do_table], | |
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state] | |
) | |
retrieval_slider.change( | |
fn=update_retrieval_context, | |
inputs=[hidden_token_count, retrieval_slider], | |
outputs=retrieval_info_text | |
) | |
compress_button.click( | |
fn=prepare_compression_and_rag, | |
inputs=[markdown_output, retrieval_slider, global_local_slider, task_description_input, few_shot_input, compressed_doc_state], | |
outputs=[compressed_doc_state, compression_done] | |
) | |
with gr.Column(elem_classes="chatbot-container"): | |
gr.Markdown("## Chat") | |
chat_interface = gr.ChatInterface( | |
fn=chat_response_stream, | |
additional_inputs=[compressed_doc_state], | |
type="messages" | |
) | |
demo.queue(max_size=16).launch() | |