Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient, HfApi | |
import os | |
import requests | |
from typing import List, Dict, Union, Tuple | |
import traceback | |
from PIL import Image | |
from io import BytesIO | |
import asyncio | |
from gradio_client import Client | |
import time | |
import threading | |
import json | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus-08-2024", token=HF_TOKEN) | |
hf_api = HfApi(token=HF_TOKEN) | |
def get_headers(): | |
if not HF_TOKEN: | |
raise ValueError("Hugging Face token not found in environment variables") | |
return {"Authorization": f"Bearer {HF_TOKEN}"} | |
def get_file_content(space_id: str, file_path: str) -> str: | |
file_url = f"https://huggingface.co/spaces/{space_id}/raw/main/{file_path}" | |
try: | |
response = requests.get(file_url, headers=get_headers()) | |
if response.status_code == 200: | |
return response.text | |
else: | |
return f"File not found or inaccessible: {file_path}" | |
except requests.RequestException: | |
return f"Error fetching content for file: {file_path}" | |
def get_space_structure(space_id: str) -> Dict: | |
try: | |
files = hf_api.list_repo_files(repo_id=space_id, repo_type="space") | |
tree = {"type": "directory", "path": "", "name": space_id, "children": []} | |
for file in files: | |
path_parts = file.split('/') | |
current = tree | |
for i, part in enumerate(path_parts): | |
if i == len(path_parts) - 1: # νμΌ | |
current["children"].append({"type": "file", "path": file, "name": part}) | |
else: # λλ ν 리 | |
found = False | |
for child in current["children"]: | |
if child["type"] == "directory" and child["name"] == part: | |
current = child | |
found = True | |
break | |
if not found: | |
new_dir = {"type": "directory", "path": '/'.join(path_parts[:i+1]), "name": part, "children": []} | |
current["children"].append(new_dir) | |
current = new_dir | |
return tree | |
except Exception as e: | |
print(f"Error in get_space_structure: {str(e)}") | |
return {"error": f"API request error: {str(e)}"} | |
def format_tree_structure(tree_data: Dict, indent: str = "") -> str: | |
formatted = f"{indent}{'π' if tree_data['type'] == 'directory' else 'π'} {tree_data['name']}\n" | |
if tree_data["type"] == "directory": | |
for child in sorted(tree_data.get("children", []), key=lambda x: (x["type"] != "directory", x["name"])): | |
formatted += format_tree_structure(child, indent + " ") | |
return formatted | |
def analyze_space(url: str, progress=gr.Progress()): | |
try: | |
space_id = url.split('spaces/')[-1] | |
progress(0.1, desc="νμΌ κ΅¬μ‘° λΆμ μ€...") | |
tree_structure = get_space_structure(space_id) | |
tree_view = format_tree_structure(tree_structure) | |
progress(0.3, desc="app.py λ΄μ© κ°μ Έμ€λ μ€...") | |
app_content = get_file_content(space_id, "app.py") | |
progress(0.4, desc="μ½λ μμ½ μ€...") | |
summary = summarize_code(app_content) | |
progress(0.6, desc="μ½λ λΆμ μ€...") | |
analysis = analyze_code(app_content) | |
progress(0.8, desc="μ¬μ©λ² μ€λͺ μμ± μ€...") | |
usage = explain_usage(app_content) | |
progress(1.0, desc="μλ£") | |
return summary, analysis, usage, app_content, tree_view, tree_structure, space_id | |
except Exception as e: | |
print(f"Error in analyze_space: {str(e)}") | |
print(traceback.format_exc()) | |
return f"μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}", "", "", "", "", None, "" | |
def respond( | |
message: str, | |
history: List[Tuple[str, str]], | |
system_message: str = "", | |
max_tokens: int = 4000, | |
temperature: float = 0.7, | |
top_p: float = 0.9, | |
): | |
system_prefix = """λ°λμ νκΈλ‘ λ΅λ³ν κ². λλ μ£Όμ΄μ§ μμ€μ½λλ₯Ό κΈ°λ°μΌλ‘ "μλΉμ€ μ¬μ© μ€λͺ λ° μλ΄, qnaλ₯Ό νλ μν μ΄λ€". μμ£Ό μΉμ νκ³ μμΈνκ² 4000ν ν° μ΄μ μμ±νλΌ. λλ μ½λλ₯Ό κΈ°λ°μΌλ‘ μ¬μ© μ€λͺ λ° μ§μ μλ΅μ μ§ννλ©°, μ΄μ©μμκ² λμμ μ£Όμ΄μΌ νλ€. μ΄μ©μκ° κΆκΈν΄ ν λ§ ν λ΄μ©μ μΉμ νκ² μλ €μ£Όλλ‘ νλΌ. μ½λ μ 체 λ΄μ©μ λν΄μλ 보μμ μ μ§νκ³ , ν€ κ° λ° μλν¬μΈνΈμ ꡬ체μ μΈ λͺ¨λΈμ 곡κ°νμ§ λ§λΌ.""" | |
messages = [{"role": "system", "content": f"{system_prefix} {system_message}"}] | |
for user, assistant in history: | |
messages.append({"role": "user", "content": user}) | |
messages.append({"role": "assistant", "content": assistant}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in hf_client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.get('content', None) | |
if token: | |
response += token.strip("") | |
yield response | |
def summarize_code(app_content: str): | |
system_message = "λΉμ μ Python μ½λλ₯Ό λΆμνκ³ μμ½νλ AI μ‘°μμ λλ€. μ£Όμ΄μ§ μ½λλ₯Ό 3μ€ μ΄λ΄λ‘ κ°κ²°νκ² μμ½ν΄μ£ΌμΈμ." | |
user_message = f"λ€μ Python μ½λλ₯Ό 3μ€ μ΄λ΄λ‘ μμ½ν΄μ£ΌμΈμ:\n\n{app_content}" | |
messages = [ | |
{"role": "system", "content": system_message}, | |
{"role": "user", "content": user_message} | |
] | |
try: | |
for response in hf_client.chat_completion_stream(messages, max_tokens=200, temperature=0.7): | |
yield response.choices[0].delta.content | |
except Exception as e: | |
yield f"μμ½ μμ± μ€ μ€λ₯ λ°μ: {str(e)}" | |
def analyze_code(app_content: str): | |
system_message = """λΉμ μ Python μ½λλ₯Ό λΆμνλ AI μ‘°μμ λλ€. μ£Όμ΄μ§ μ½λλ₯Ό λΆμνμ¬ λ€μ νλͺ©μ λν΄ μ€λͺ ν΄μ£ΌμΈμ: | |
A. λ°°κ²½ λ° νμμ± | |
B. κΈ°λ₯μ ν¨μ©μ± λ° κ°μΉ | |
C. νΉμ₯μ | |
D. μ μ© λμ λ° νκ² | |
E. κΈ°λν¨κ³Ό | |
κΈ°μ‘΄ λ° μ μ¬ νλ‘μ νΈμ λΉκ΅νμ¬ λΆμν΄μ£ΌμΈμ. Markdown νμμΌλ‘ μΆλ ₯νμΈμ.""" | |
user_message = f"λ€μ Python μ½λλ₯Ό λΆμν΄μ£ΌμΈμ:\n\n{app_content}" | |
messages = [ | |
{"role": "system", "content": system_message}, | |
{"role": "user", "content": user_message} | |
] | |
try: | |
for response in hf_client.chat_completion_stream(messages, max_tokens=1000, temperature=0.7): | |
yield response.choices[0].delta.content | |
except Exception as e: | |
yield f"λΆμ μμ± μ€ μ€λ₯ λ°μ: {str(e)}" | |
def explain_usage(app_content: str): | |
system_message = "λΉμ μ Python μ½λλ₯Ό λΆμνμ¬ μ¬μ©λ²μ μ€λͺ νλ AI μ‘°μμ λλ€. μ£Όμ΄μ§ μ½λλ₯Ό λ°νμΌλ‘ λ§μΉ νλ©΄μ 보λ κ²μ²λΌ μ¬μ©λ²μ μμΈν μ€λͺ ν΄μ£ΌμΈμ. Markdown νμμΌλ‘ μΆλ ₯νμΈμ." | |
user_message = f"λ€μ Python μ½λμ μ¬μ©λ²μ μ€λͺ ν΄μ£ΌμΈμ:\n\n{app_content}" | |
messages = [ | |
{"role": "system", "content": system_message}, | |
{"role": "user", "content": user_message} | |
] | |
try: | |
for response in hf_client.chat_completion_stream(messages, max_tokens=800, temperature=0.7): | |
yield response.choices[0].delta.content | |
except Exception as e: | |
yield f"μ¬μ©λ² μ€λͺ μμ± μ€ μ€λ₯ λ°μ: {str(e)}" | |
def analyze_space(url: str, progress=gr.Progress()): | |
try: | |
space_id = url.split('spaces/')[-1] | |
progress(0.1, desc="νμΌ κ΅¬μ‘° λΆμ μ€...") | |
tree_structure = get_space_structure(space_id) | |
tree_view = format_tree_structure(tree_structure) | |
progress(0.3, desc="app.py λ΄μ© κ°μ Έμ€λ μ€...") | |
app_content = get_file_content(space_id, "app.py") | |
progress(1.0, desc="μλ£") | |
return app_content, tree_view, tree_structure, space_id | |
except Exception as e: | |
print(f"Error in analyze_space: {str(e)}") | |
print(traceback.format_exc()) | |
return f"μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}", "", None, "" | |
def create_ui(): | |
try: | |
css = """ | |
footer {visibility: hidden;} | |
.output-group { | |
border: 1px solid #ddd; | |
border-radius: 5px; | |
padding: 10px; | |
margin-bottom: 20px; | |
} | |
.scroll-lock { | |
overflow-y: auto !important; | |
max-height: calc((100vh - 200px) / 5) !important; | |
} | |
.full-height { | |
height: calc(100vh - 200px) !important; | |
overflow-y: auto !important; | |
} | |
.tabs-style { | |
background-color: #ffff00 !important; | |
font-weight: bold !important; | |
} | |
.main-tabs .tabitem[id^="tab_"] { | |
background-color: #ffff00 !important; | |
font-weight: bold !important; | |
} | |
.file-button { | |
background-color: #f0f0f0; | |
border: 1px solid #ddd; | |
padding: 5px 10px; | |
margin: 2px 0; | |
cursor: pointer; | |
text-align: left; | |
width: 100%; | |
} | |
.file-button:hover { | |
background-color: #e0e0e0; | |
} | |
""" | |
with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo: | |
gr.Markdown("# HuggingFace Space Analyzer") | |
with gr.Tabs(elem_classes="main-tabs") as tabs: | |
with gr.TabItem("λΆμ"): | |
with gr.Row(): | |
with gr.Column(scale=6): # μΌμͺ½ 60% | |
url_input = gr.Textbox(label="HuggingFace Space URL") | |
analyze_button = gr.Button("λΆμ") | |
with gr.Group(elem_classes="output-group scroll-lock"): | |
summary_output = gr.Markdown(label="μμ½ (3μ€ μ΄λ΄)") | |
with gr.Group(elem_classes="output-group scroll-lock"): | |
analysis_output = gr.Markdown(label="λΆμ") | |
with gr.Group(elem_classes="output-group scroll-lock"): | |
usage_output = gr.Markdown(label="μ¬μ©λ²") | |
with gr.Group(elem_classes="output-group scroll-lock"): | |
tree_view_output = gr.Textbox(label="νμΌ κ΅¬μ‘° (Tree View)", lines=20) | |
with gr.Group(elem_classes="output-group scroll-lock"): | |
file_buttons = gr.HTML(label="νμΌ λ¦¬μ€νΈ") | |
with gr.Column(scale=4): # μ€λ₯Έμͺ½ 40% | |
with gr.Group(elem_classes="output-group full-height"): | |
code_tabs = gr.Tabs(elem_classes="tabs-style") | |
with code_tabs: | |
app_py_tab = gr.TabItem("app.py") | |
with app_py_tab: | |
app_py_content = gr.Code(language="python", label="app.py", lines=30) | |
requirements_tab = gr.TabItem("requirements.txt") | |
with requirements_tab: | |
requirements_content = gr.Code(language="text", label="requirements.txt", lines=30) | |
with gr.TabItem("AI μ½λ©"): | |
chatbot = gr.Chatbot(label="λν", type="messages") | |
msg = gr.Textbox(label="λ©μμ§") | |
with gr.Row(): | |
system_message = gr.Textbox(label="System Message", value="") | |
max_tokens = gr.Slider(minimum=1, maximum=8000, value=4000, label="Max Tokens") | |
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature") | |
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P") | |
examples = [ | |
["μμΈν μ¬μ© λ°©λ²μ λ§μΉ νλ©΄μ 보면μ μ€λͺ νλ―μ΄ 4000 ν ν° μ΄μ μμΈν μ€λͺ νλΌ"], | |
["FAQ 20건μ μμΈνκ² μμ±νλΌ. 4000ν ν° μ΄μ μ¬μ©νλΌ."], | |
["μ¬μ© λ°©λ²κ³Ό μ°¨λ³μ , νΉμ§, κ°μ μ μ€μ¬μΌλ‘ 4000 ν ν° μ΄μ μ νλΈ μμ μ€ν¬λ¦½νΈ ννλ‘ μμ±νλΌ"], | |
["λ³Έ μλΉμ€λ₯Ό SEO μ΅μ ννμ¬ λΈλ‘κ·Έ ν¬μ€νΈ(λ°°κ²½ λ° νμμ±, κΈ°μ‘΄ μ μ¬ μλΉμ€μ λΉκ΅νμ¬ νΉμ₯μ , νμ©μ², κ°μΉ, κΈ°λν¨κ³Ό, κ²°λ‘ μ ν¬ν¨)λ‘ 4000 ν ν° μ΄μ μμ±νλΌ"], | |
["νΉν μΆμμ νμ©ν κΈ°μ λ° λΉμ¦λμ€λͺ¨λΈ μΈ‘λ©΄μ ν¬ν¨νμ¬ νΉν μΆμμ ꡬμ±μ λ§κ² νμ μ μΈ μ°½μ λ°λͺ λ΄μ©μ μ€μ¬μΌλ‘ 4000ν ν° μ΄μ μμ±νλΌ."], | |
["κ³μ μ΄μ΄μ λ΅λ³νλΌ"], | |
] | |
gr.Examples(examples, inputs=msg) | |
def respond_wrapper(message, chat_history, system_message, max_tokens, temperature, top_p): | |
bot_message = respond(message, chat_history, system_message, max_tokens, temperature, top_p) | |
chat_history.append({"role": "user", "content": message}) | |
chat_history.append({"role": "assistant", "content": bot_message}) | |
return "", chat_history | |
msg.submit(respond_wrapper, [msg, chatbot, system_message, max_tokens, temperature, top_p], [msg, chatbot]) | |
space_id_state = gr.State() | |
tree_structure_state = gr.State() | |
def update_file_buttons(tree_structure, space_id): | |
if tree_structure is None: | |
return "" | |
def get_files(node): | |
files = [] | |
if node["type"] == "file": | |
files.append(node) | |
elif node["type"] == "directory": | |
for child in node.get("children", []): | |
files.extend(get_files(child)) | |
return files | |
files = get_files(tree_structure) | |
buttons_html = "<div style='display: flex; flex-direction: column;'>" | |
for file in files: | |
buttons_html += f"<button class='file-button' onclick='openFile(\"{file['path']}\", \"{space_id}\")'>{file['path']}</button>" | |
buttons_html += "</div>" | |
return buttons_html | |
def open_file(file_path: str, space_id: str): | |
content = get_file_content(space_id, file_path) | |
file_name = file_path.split('/')[-1] | |
language = "python" if file_name.endswith('.py') else "text" | |
return gr.Tabs.update(selected=file_name), gr.Code.update(value=content, language=language, label=file_name) | |
analyze_button.click( | |
analyze_space, | |
inputs=[url_input], | |
outputs=[app_py_content, tree_view_output, tree_structure_state, space_id_state] | |
).then( | |
update_file_buttons, | |
inputs=[tree_structure_state, space_id_state], | |
outputs=[file_buttons] | |
).then( | |
summarize_code, | |
inputs=[app_py_content], | |
outputs=[summary_output] | |
).then( | |
analyze_code, | |
inputs=[app_py_content], | |
outputs=[analysis_output] | |
).then( | |
explain_usage, | |
inputs=[app_py_content], | |
outputs=[usage_output] | |
).then( | |
lambda space_id: get_file_content(space_id, "requirements.txt"), | |
inputs=[space_id_state], | |
outputs=[requirements_content] | |
) | |
file_path_input = gr.Textbox(visible=False) | |
space_id_input = gr.Textbox(visible=False) | |
file_path_input.change( | |
open_file, | |
inputs=[file_path_input, space_id_input], | |
outputs=[code_tabs, code_tabs] | |
) | |
return demo | |
except Exception as e: | |
print(f"Error in create_ui: {str(e)}") | |
print(traceback.format_exc()) | |
raise | |
if __name__ == "__main__": | |
try: | |
demo = create_ui() | |
demo.queue() | |
demo.launch( | |
share=False, | |
debug=True, | |
show_api=False | |
) | |
except Exception as e: | |
print(f"Error in main: {str(e)}") | |
print(traceback.format_exc()) |