Spaces:
Running
Running
File size: 5,443 Bytes
7cb753c 6ace5a4 7cb753c d934b2b 7cb753c da191b4 7cb753c d934b2b 8934894 da191b4 d934b2b 8934894 7cb753c 8934894 d934b2b 7cb753c d934b2b 7cb753c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import requests
from typing import List, Dict, Union
import concurrent.futures
import traceback
# ํ๊ฒฝ ๋ณ์์์ ํ ํฐ ๊ฐ์ ธ์ค๊ธฐ
HF_TOKEN = os.getenv("HF_TOKEN")
# ์ถ๋ก API ํด๋ผ์ด์ธํธ ์ค์
hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus-08-2024", token=HF_TOKEN)
def get_headers():
if not HF_TOKEN:
raise ValueError("Hugging Face token not found in environment variables")
return {"Authorization": f"Bearer {HF_TOKEN}"}
def get_most_liked_spaces(limit: int = 100) -> Union[List[Dict], str]:
url = "https://huggingface.co/api/spaces"
params = {
"sort": "likes",
"direction": -1,
"limit": limit,
"full": "true"
}
try:
response = requests.get(url, params=params, headers=get_headers())
response.raise_for_status()
data = response.json()
if isinstance(data, list):
return data
else:
return f"Unexpected API response format: {type(data)}"
except requests.RequestException as e:
return f"API request error: {str(e)}"
except ValueError as e:
return f"JSON decoding error: {str(e)}"
def format_space(space: Dict) -> Dict:
space_id = space.get('id', 'Unknown')
space_name = space_id.split('/')[-1] if '/' in space_id else space_id
space_author = space.get('author', 'Unknown')
if isinstance(space_author, dict):
space_author = space_author.get('user', space_author.get('name', 'Unknown'))
space_likes = space.get('likes', 'N/A')
space_url = f"https://huggingface.co/spaces/{space_id}"
return {
"id": space_id,
"name": space_name,
"author": space_author,
"likes": space_likes,
"url": space_url
}
def format_spaces(spaces: Union[List[Dict], str]) -> List[Dict]:
if isinstance(spaces, str):
return [{"error": spaces}]
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
return list(executor.map(format_space, spaces))
def get_app_py_content(space_id: str) -> str:
app_py_url = f"https://huggingface.co/spaces/{space_id}/raw/main/app.py"
try:
response = requests.get(app_py_url, headers=get_headers())
if response.status_code == 200:
return response.text
else:
return f"app.py file not found or inaccessible for space: {space_id}"
except requests.RequestException:
return f"Error fetching app.py content for space: {space_id}"
def summarize_space(space: Dict) -> str:
system_message = "๋น์ ์ Hugging Face Space์ ๋ด์ฉ์ ์์ฝํ๋ AI ์กฐ์์
๋๋ค. ์ฃผ์ด์ง ์ ๋ณด๋ฅผ ๋ฐํ์ผ๋ก ๊ฐ๊ฒฐํ๊ณ ๋ช
ํํ ์์ฝ์ ์ ๊ณตํด์ฃผ์ธ์."
user_message = f"๋ค์ Hugging Face Space๋ฅผ ์์ฝํด์ฃผ์ธ์: {space['name']} by {space['author']}. ์ข์์ ์: {space['likes']}. URL: {space['url']}"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
response = hf_client.chat_completion(messages, max_tokens=150, temperature=0.7)
return response.choices[0].message.content
def create_ui():
spaces_list = get_most_liked_spaces()
formatted_spaces = format_spaces(spaces_list)
print(f"Total spaces loaded: {len(formatted_spaces)}") # ๋๋ฒ๊น
์ถ๋ ฅ
css = """
.minimal-button {
min-width: 30px !important;
height: 25px !important;
line-height: 1 !important;
font-size: 12px !important;
padding: 2px 5px !important;
}
.space-row {
margin-bottom: 5px !important;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("# Hugging Face Most Liked Spaces")
with gr.Row():
with gr.Column(scale=1):
for space in formatted_spaces:
with gr.Row(elem_classes="space-row"):
gr.Markdown(f"{space['name']} by {space['author']} (Likes: {space['likes']})", elem_classes="space-info")
button = gr.Button("ํด๋ฆญ", elem_classes="minimal-button")
button.click(
lambda s=space: on_select(s),
inputs=[],
outputs=[info_output, app_py_content]
)
with gr.Column(scale=1):
info_output = gr.Textbox(label="Space ์ ๋ณด ๋ฐ ์์ฝ", lines=10)
app_py_content = gr.Code(language="python", label="app.py ๋ด์ฉ")
def on_select(space):
try:
summary = summarize_space(space)
app_content = get_app_py_content(space['id'])
info = f"์ ํ๋ Space: {space['name']} (ID: {space['id']})\n"
info += f"Author: {space['author']}\n"
info += f"Likes: {space['likes']}\n"
info += f"URL: {space['url']}\n\n"
info += f"์์ฝ:\n{summary}"
return info, app_content
except Exception as e:
print(f"Error in on_select: {str(e)}")
print(traceback.format_exc())
return f"์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}", ""
return demo
if __name__ == "__main__":
demo = create_ui()
demo.launch() |