File size: 6,301 Bytes
7cb753c
 
 
 
 
 
 
ccbe8d0
7cb753c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccbe8d0
 
 
 
 
 
 
 
 
 
7cb753c
 
 
 
 
 
 
 
 
 
 
ccbe8d0
 
7cb753c
 
 
 
 
ccbe8d0
 
7cb753c
 
 
 
 
 
 
 
 
d934b2b
 
 
 
 
 
 
 
 
 
 
7cb753c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da191b4
 
 
 
 
 
 
 
 
 
 
ccbe8d0
 
 
 
 
da191b4
 
 
7cb753c
 
 
d934b2b
8934894
da191b4
ccbe8d0
 
 
 
 
 
 
 
 
 
 
 
d934b2b
 
 
 
 
8934894
7cb753c
8934894
 
 
 
 
 
d934b2b
 
7cb753c
 
d934b2b
7cb753c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
from huggingface_hub import InferenceClient
import os
import requests
from typing import List, Dict, Union
import concurrent.futures
import traceback
import base64

# ํ™˜๊ฒฝ ๋ณ€์ˆ˜์—์„œ ํ† ํฐ ๊ฐ€์ ธ์˜ค๊ธฐ
HF_TOKEN = os.getenv("HF_TOKEN")

# ์ถ”๋ก  API ํด๋ผ์ด์–ธํŠธ ์„ค์ •
hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus-08-2024", token=HF_TOKEN)

def get_headers():
    if not HF_TOKEN:
        raise ValueError("Hugging Face token not found in environment variables")
    return {"Authorization": f"Bearer {HF_TOKEN}"}

def get_most_liked_spaces(limit: int = 100) -> Union[List[Dict], str]:
    url = "https://huggingface.co/api/spaces"
    params = {
        "sort": "likes",
        "direction": -1,
        "limit": limit,
        "full": "true"
    }
    
    try:
        response = requests.get(url, params=params, headers=get_headers())
        response.raise_for_status()
        data = response.json()
        
        if isinstance(data, list):
            return data
        else:
            return f"Unexpected API response format: {type(data)}"
    except requests.RequestException as e:
        return f"API request error: {str(e)}"
    except ValueError as e:
        return f"JSON decoding error: {str(e)}"

def capture_thumbnail(space_id: str) -> str:
    screenshot_url = f"https://huggingface.co/spaces/{space_id}/thumbnail.png"
    try:
        response = requests.get(screenshot_url, headers=get_headers())
        if response.status_code == 200:
            return response.content
    except requests.RequestException:
        pass
    return None

def format_space(space: Dict) -> Dict:
    space_id = space.get('id', 'Unknown')
    space_name = space_id.split('/')[-1] if '/' in space_id else space_id
    
    space_author = space.get('author', 'Unknown')
    if isinstance(space_author, dict):
        space_author = space_author.get('user', space_author.get('name', 'Unknown'))
    
    space_likes = space.get('likes', 'N/A')
    space_url = f"https://huggingface.co/spaces/{space_id}"
    
    thumbnail = capture_thumbnail(space_id)
    
    return {
        "id": space_id,
        "name": space_name,
        "author": space_author,
        "likes": space_likes,
        "url": space_url,
        "thumbnail": thumbnail
    }

def format_spaces(spaces: Union[List[Dict], str]) -> List[Dict]:
    if isinstance(spaces, str):
        return [{"error": spaces}]
    
    with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
        return list(executor.map(format_space, spaces))

def get_app_py_content(space_id: str) -> str:
    app_py_url = f"https://huggingface.co/spaces/{space_id}/raw/main/app.py"
    try:
        response = requests.get(app_py_url, headers=get_headers())
        if response.status_code == 200:
            return response.text
        else:
            return f"app.py file not found or inaccessible for space: {space_id}"
    except requests.RequestException:
        return f"Error fetching app.py content for space: {space_id}"

def summarize_space(space: Dict) -> str:
    system_message = "๋‹น์‹ ์€ Hugging Face Space์˜ ๋‚ด์šฉ์„ ์š”์•ฝํ•˜๋Š” AI ์กฐ์ˆ˜์ž…๋‹ˆ๋‹ค. ์ฃผ์–ด์ง„ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฐ„๊ฒฐํ•˜๊ณ  ๋ช…ํ™•ํ•œ ์š”์•ฝ์„ ์ œ๊ณตํ•ด์ฃผ์„ธ์š”."
    user_message = f"๋‹ค์Œ Hugging Face Space๋ฅผ ์š”์•ฝํ•ด์ฃผ์„ธ์š”: {space['name']} by {space['author']}. ์ข‹์•„์š” ์ˆ˜: {space['likes']}. URL: {space['url']}"
    
    messages = [
        {"role": "system", "content": system_message},
        {"role": "user", "content": user_message}
    ]
    
    response = hf_client.chat_completion(messages, max_tokens=150, temperature=0.7)
    return response.choices[0].message.content

def create_ui():
    spaces_list = get_most_liked_spaces()
    formatted_spaces = format_spaces(spaces_list)
    print(f"Total spaces loaded: {len(formatted_spaces)}")  # ๋””๋ฒ„๊น… ์ถœ๋ ฅ

    css = """
    .minimal-button {
        min-width: 30px !important;
        height: 25px !important;
        line-height: 1 !important;
        font-size: 12px !important;
        padding: 2px 5px !important;
    }
    .space-row {
        margin-bottom: 5px !important;
    }
    .thumbnail {
        max-width: 100px;
        max-height: 100px;
        object-fit: contain;
    }
    """

    with gr.Blocks(css=css) as demo:
        gr.Markdown("# Hugging Face Most Liked Spaces")
        
        with gr.Row():
            with gr.Column(scale=1):
                for space in formatted_spaces:
                    with gr.Row(elem_classes="space-row"):
                        if space['thumbnail']:
                            gr.Image(value=space['thumbnail'], show_label=False, elem_classes="thumbnail")
                        else:
                            gr.Markdown("No thumbnail")
                        with gr.Column():
                            gr.Markdown(f"{space['name']} by {space['author']} (Likes: {space['likes']})", elem_classes="space-info")
                            button = gr.Button("ํด๋ฆญ", elem_classes="minimal-button")
                            button.click(
                                lambda s=space: on_select(s),
                                inputs=[],
                                outputs=[info_output, app_py_content]
                            )
            
            with gr.Column(scale=1):
                info_output = gr.Textbox(label="Space ์ •๋ณด ๋ฐ ์š”์•ฝ", lines=10)
                app_py_content = gr.Code(language="python", label="app.py ๋‚ด์šฉ")

        def on_select(space):
            try:
                summary = summarize_space(space)
                app_content = get_app_py_content(space['id'])
                info = f"์„ ํƒ๋œ Space: {space['name']} (ID: {space['id']})\n"
                info += f"Author: {space['author']}\n"
                info += f"Likes: {space['likes']}\n"
                info += f"URL: {space['url']}\n\n"
                info += f"์š”์•ฝ:\n{summary}"
                return info, app_content
            except Exception as e:
                print(f"Error in on_select: {str(e)}")
                print(traceback.format_exc())
                return f"์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}", ""

    return demo

if __name__ == "__main__":
    demo = create_ui()
    demo.launch()