File size: 5,311 Bytes
7cb753c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4855252
7cb753c
 
 
 
 
29af47d
7cb753c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccbe8d0
7cb753c
 
4855252
 
 
29af47d
4855252
 
 
 
 
e1e1afb
4855252
 
 
 
e1e1afb
4855252
 
 
 
 
026790d
d934b2b
 
 
 
 
 
 
 
 
 
 
4855252
 
 
 
 
 
 
 
 
 
 
 
 
 
7cb753c
 
 
e1e1afb
7cb753c
4855252
7cb753c
da191b4
4855252
 
 
da191b4
 
9963b1f
7cb753c
 
 
d934b2b
f0fbe3a
8934894
f0fbe3a
ccbe8d0
 
 
f0fbe3a
d934b2b
 
 
 
 
f0fbe3a
 
 
 
 
 
7cb753c
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import gradio as gr
from huggingface_hub import InferenceClient
import os
import requests
from typing import List, Dict, Union
import traceback

HF_TOKEN = os.getenv("HF_TOKEN")
hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus-08-2024", token=HF_TOKEN)

def get_headers():
    if not HF_TOKEN:
        raise ValueError("Hugging Face token not found in environment variables")
    return {"Authorization": f"Bearer {HF_TOKEN}"}

def get_most_liked_spaces(limit: int = 100) -> Union[List[Dict], str]:
    url = "https://huggingface.co/api/spaces"
    params = {
        "sort": "likes",
        "direction": -1,
        "limit": limit,
        "full": "true"
    }
    
    try:
        response = requests.get(url, params=params, headers=get_headers())
        response.raise_for_status()
        return response.json()
    except requests.RequestException as e:
        return f"API request error: {str(e)}"
    except ValueError as e:
        return f"JSON decoding error: {str(e)}"

def format_space(space: Dict) -> Dict:
    space_id = space.get('id', 'Unknown')
    space_name = space_id.split('/')[-1] if '/' in space_id else space_id
    
    space_author = space.get('author', 'Unknown')
    if isinstance(space_author, dict):
        space_author = space_author.get('user', space_author.get('name', 'Unknown'))
    
    space_likes = space.get('likes', 'N/A')
    space_url = f"https://huggingface.co/spaces/{space_id}"
    
    return {
        "id": space_id,
        "name": space_name,
        "author": space_author,
        "likes": space_likes,
        "url": space_url,
    }

def format_spaces(spaces: Union[List[Dict], str]) -> List[Dict]:
    if isinstance(spaces, str):
        return [{"error": spaces}]
    
    return [format_space(space) for space in spaces if isinstance(space, dict)]

def summarize_space(space: Dict) -> str:
    system_message = "๋‹น์‹ ์€ Hugging Face Space์˜ ๋‚ด์šฉ์„ ์š”์•ฝํ•˜๋Š” AI ์กฐ์ˆ˜์ž…๋‹ˆ๋‹ค. ์ฃผ์–ด์ง„ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฐ„๊ฒฐํ•˜๊ณ  ๋ช…ํ™•ํ•œ ์š”์•ฝ์„ ์ œ๊ณตํ•ด์ฃผ์„ธ์š”."
    user_message = f"๋‹ค์Œ Hugging Face Space๋ฅผ ์š”์•ฝํ•ด์ฃผ์„ธ์š”: {space['name']} by {space['author']}. ์ข‹์•„์š” ์ˆ˜: {space['likes']}. URL: {space['url']}"
    
    messages = [
        {"role": "system", "content": system_message},
        {"role": "user", "content": user_message}
    ]
    
    try:
        response = hf_client.chat_completion(messages, max_tokens=150, temperature=0.7)
        return response.choices[0].message.content
    except Exception as e:
        return f"์š”์•ฝ ์ƒ์„ฑ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {str(e)}"

def get_app_py_content(space_id: str) -> str:
    app_py_url = f"https://huggingface.co/spaces/{space_id}/raw/main/app.py"
    try:
        response = requests.get(app_py_url, headers=get_headers())
        if response.status_code == 200:
            return response.text
        else:
            return f"app.py file not found or inaccessible for space: {space_id}"
    except requests.RequestException:
        return f"Error fetching app.py content for space: {space_id}"

def on_select(space):
    try:
        summary = summarize_space(space)
        app_content = get_app_py_content(space['id'])
        info = f"์„ ํƒ๋œ Space: {space['name']} (ID: {space['id']})\n"
        info += f"Author: {space['author']}\n"
        info += f"Likes: {space['likes']}\n"
        info += f"URL: {space['url']}\n\n"
        info += f"์š”์•ฝ:\n{summary}"
        return info, app_content
    except Exception as e:
        print(f"Error in on_select: {str(e)}")
        print(traceback.format_exc())
        return f"์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}", ""

def create_ui():
    spaces_list = get_most_liked_spaces()
    print(f"Type of spaces_list: {type(spaces_list)}")
    formatted_spaces = format_spaces(spaces_list)
    print(f"Total spaces loaded: {len(formatted_spaces)}")

    css = """
    footer {visibility: hidden;}
    .minimal-button {min-width: 30px !important; height: 25px !important; line-height: 1 !important; font-size: 12px !important; padding: 2px 5px !important;}
    .space-row {margin-bottom: 5px !important;}
    """

    with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
        gr.Markdown("# Hugging Face Most Liked Spaces")
        
        with gr.Row():
            with gr.Column(scale=1):
                space_rows = []
                for space in formatted_spaces:
                    with gr.Row(elem_classes="space-row") as space_row:
                        with gr.Column():
                            gr.Markdown(f"{space['name']} by {space['author']} (Likes: {space['likes']})", elem_classes="space-info")
                            button = gr.Button("ํด๋ฆญ", elem_classes="minimal-button")
                    space_rows.append((space_row, button, space))
            
            with gr.Column(scale=1):
                info_output = gr.Textbox(label="Space ์ •๋ณด ๋ฐ ์š”์•ฝ", lines=10)
                app_py_content = gr.Code(language="python", label="app.py ๋‚ด์šฉ")

        for _, button, space in space_rows:
            button.click(
                lambda s=space: on_select(s),
                inputs=[],
                outputs=[info_output, app_py_content]
            )

    return demo

if __name__ == "__main__":
    demo = create_ui()
    demo.launch()